\[\boxed{\mathbf{90}\mathbf{.}}\]
\[f(x) = \frac{b - x}{\sqrt{x^{2} + 1}};\ \ b < 0;\ \ \lbrack 1;2\rbrack\]
\[Определена\ для\ всех\ x\ из\]
\[\ данного\ интервала.\]
\[f^{'}(x) =\]
\[= \frac{- 1 \cdot \sqrt{x^{2} + 1} - (b - x) \cdot \frac{1}{2\sqrt{x^{2} + 1}} \cdot 2x}{\left( \sqrt{x^{2} + 1} \right)^{2}} =\]
\[= \frac{- x^{2} - 1 - (b - x)x}{\left( x^{2} + 1 \right)^{\frac{3}{2}}} =\]
\[= \frac{- 1 - bx}{\left( x^{2} + 1 \right)^{\frac{3}{2}}};\]
\[\frac{- 1 - bx}{\left( x^{2} + 1 \right)^{\frac{3}{2}}} = 0\]
\[- 1 - bx = 0\]
\[bx = - 1\]
\[x = - \frac{1}{b} \rightarrow единственная\]
\[\ критическая\ точка\ на\ \]
\[отрезке;в\ ней\]
\[достигается\ наименьшее\ \]
\[значение\ функции.\]
\[- 1 < - \frac{1}{b} < 2\]
\[- 1 < b < - 0,5:\]
\[функция\ имеет\ единственную\ \]
\[критическую\ точку\ на\ \]
\[данном\ отрезке.\]
\[f(1) = \frac{b - 1}{\sqrt{2}};\]
\[f\left( - \frac{1}{b} \right) = \frac{b + \frac{1}{b}}{\sqrt{\frac{1}{b^{2}} + 1}} =\]
\[= \frac{b^{2} + 1}{\sqrt{1 + b^{2}}} = \sqrt{b^{2} + 1};\]
\[f(2) = \frac{b - 2}{\sqrt{5}}.\]
\[\sqrt{b^{2} + 1} < \frac{b - 1}{\sqrt{2}};\]
\[\sqrt{b^{2} + 1} < \frac{b - 2}{\sqrt{5}}.\]
\[b \leq - 1:\]
\[\min{f(x)} = f(1) = \frac{b - 1}{\sqrt{2}}.\]
\[- 1 < b < - 0,5:\]
\[\min{f(x)} = f\left( - \frac{1}{b} \right) = \sqrt{b^{2} + 1.}\]
\[\frac{1}{2} \leq b < 0:\]
\[\min{f(x)} = f(2) = \frac{b - 2}{\sqrt{5}}.\]