\[\boxed{\mathbf{89}\mathbf{.}}\]
\[f(x) = \frac{x + b}{\sqrt{x^{2} + 1}};\ \ \ b > 0;\ \ \lbrack 1;2\rbrack\]
\[Функция\ определена\ для\ всех\ \]
\[\text{x\ }из\ данного\ интервала.\]
\[f^{'}(x) =\]
\[= \frac{1 \cdot \sqrt{x^{2} + 1} - (x + b) \cdot \frac{1}{2\sqrt{x^{2} + 1}} \cdot 2x}{\left( \sqrt{x^{2} + 1} \right)^{2}} =\]
\[= \frac{x^{2} + 1 - (x + b)x}{\left( x^{2} + 1 \right)^{\frac{3}{2}}} =\]
\[= \frac{x^{2} + 1 - x^{2} - bx}{\left( x^{2} + 1 \right)^{\frac{3}{2}}} = \frac{1 - bx}{\left( x^{2} + 1 \right)^{\frac{3}{2}}}.\]
\[\frac{1 - bx}{\left( x^{2} + 1 \right)^{\frac{3}{2}}} = 0\]
\[1 - bx = 0\]
\[bx = 1\]
\[x = \frac{1}{b} \rightarrow единственная\ \]
\[критическая\ точка\ на\ отрезке.\]
\[f(1) = \frac{1 + b}{\sqrt{2}};\]
\[f(2) = \frac{2 + b}{\sqrt{5}}.\]
\[b \geq 1:\]
\[\max{f(x)} = f(1) = \frac{1 + b}{\sqrt{2}}.\]
\[1 < \frac{1}{b} < 2 \rightarrow \frac{1}{2} < b < 1:\]
\[функция\ имеет\ единственную\]
\[\ критическую\ точку.\]
\[f\left( \frac{1}{b} \right) = \frac{\frac{1}{b} + b}{\sqrt{\frac{1}{b^{2}} + 1}} = \frac{1 + b^{2}}{\sqrt{1 + b^{2}}} =\]
\[= \sqrt{1 + b^{2}};\]
\[\max{f(x)} = f\left( \frac{1}{b} \right) = \sqrt{1 + b^{2}}.\]