\[\boxed{\mathbf{88}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = (x - b)^{2};\ \ \lbrack - 1;1\rbrack\]
\[Функция\ определена\ для\ всех\]
\[\text{\ x}\ из\ данного\ интервала.\]
\[f^{'}(x) = 2(x - b) \cdot 1 = 2x - 2b;\]
\[2x - 2b = 0\]
\[2x = 2b\]
\[x = b \rightarrow критическая\ точка\ на\]
\[\ отрезке\ \lbrack - 1;1\rbrack.\]
\[f( - 1) = ( - 1 - b)^{2} = (1 + b)^{2};\]
\[f(1) = (1 - b)^{2};\]
\[f(b) = (b - b)^{2} = 0.\]
\[b < - 1:\]
\[\min{f(x)} = f( - 1) = (1 + b)^{2}.\]
\[- 1 \leq b \leq 1:\]
\[\min{f(x)} = f(b) = 0.\]
\[b > 1:\]
\[\min{f(x)} = f(1) = (1 - b)^{2}.\]
\[\textbf{б)}\ f(x) = (x - b)^{2};\ \ \lbrack - 1;1\rbrack\]
\[Функция\ определена\ для\ всех\]
\[\text{\ x}\ из\ данного\ интервала.\]
\[f^{'}(x) = 2(x - b) \cdot 1 = 2x - 2b;\]
\[2x - 2b = 0\]
\[2x = 2b\]
\[x = b \rightarrow критическая\ точка\ на\]
\[\ отрезке\ \lbrack - 1;1\rbrack.\]
\[f( - 1) = ( - 1 - b)^{2} = (1 + b)^{2};\]
\[f(1) = (1 - b)^{2};\]
\[f(b) = (b - b)^{2} = 0.\]
\[b \leq 0:\]
\[\max{f(x)} = f(1) = (1 - b)^{2}.\]
\[b > 0:\]
\[\max{f(x)} = f( - 1) = (1 + b)^{2}.\]