\[\boxed{\mathbf{70}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = (x + 2)^{n}\]
\[f^{'}(x) = n(x + 2)^{n - 1};\]
\[f^{''}(x) = n(n - 1)(x + 2)^{n - 2};\]
\[f^{(n)}(x) =\]
\[= n(n - 1) \cdot \ldots \cdot 1 \cdot (x + 2)^{n - n} =\]
\[= n!\]
\[\textbf{б)}\ f(x) = e^{x};\]
\[f^{'}(x) = e^{x};\]
\[f^{(n)}(x) = e^{x}.\]
\[\textbf{в)}\ f(x) = 3^{x};\]
\[f^{'}(x) = 3^{x}\ln 3;\]
\[f^{''}(x) = 3^{x}\ln 3 \cdot \ln 3 = 3^{x}\left( \ln 3 \right)^{2};\]
\[f^{(n)}(x) =\]
\[= 3^{x} \cdot \underset{\text{n\ }раз}{\overset{\ln 3 \cdot \ln 3 \cdot \ldots \cdot \ln 3}{︸}} =\]
\[= 3^{x}\left( \ln 3 \right)^{n}.\]
\[\textbf{г)}\ f(x) = (x - 2)^{n};\]
\[f'(x) = n(x - 2)^{n - 1};\]
\[f^{''}(x) = n(n - 1)(x - 2)^{n - 2};\]
\[f^{(n)}(x) =\]
\[= n(n - 1) \cdot \ldots \cdot 1 \cdot (x - 2)^{n - n} =\]
\[= n!\]