\[\boxed{\mathbf{59.}}\]
\[f(x) = \frac{1}{3}x^{3} - x^{2} - 8x + 1;\ \ x \in R\]
\[f^{'}(x) = \frac{1}{3} \cdot 3x^{2} - 2x - 8 =\]
\[= x^{2} - 2x - 8;\]
\[f^{'}(x) = 0:\]
\[x^{2} - 2x - 8 = 0\]
\[D_{1} = 1 + 8 = 9\]
\[x_{1} = 1 + 3 = 4;\]
\[x_{2} = 1 - 3 = - 2.\]
\[f^{'}(x) > 0:\]
\[x \leq - 2;\ \ x \geq 4.\]
\[f^{'}(x) < 0:\]
\[- 2 \leq x \leq 4.\]
\[Функция\ возрастает:\]
\[x \leq - 2;\ \ x \geq 4.\]
\[Функция\ убывает:\]
\[- 2 \leq x \leq 4.\]
\[x = - 2 \rightarrow точка\ максимума;\]
\[x = 4 \rightarrow точка\ минимума.\ \]
\[При\ x = - 2:\]
\[y_{\max} = \frac{1}{3} \cdot ( - 8) - 4 + 16 + 1 =\]
\[= - \frac{8}{3} + 13 = - 2\frac{2}{3} + 13 = 10\frac{1}{3};\]
\[При\ x = 4:\]
\[y_{\min} = \frac{1}{3} \cdot 64 - 16 - 32 + 1 =\]
\[= \frac{64}{3} - 47 = 21\frac{1}{3} - 47 = - 25\frac{2}{3}.\]
\[Функция\ на\ отрезке\ \lbrack - 1;3\rbrack\ \]
\[имеет\ один\ нуль.\]
\[На\ промежутке\ ( - \infty;\ + \infty)\ \]
\[функция\ имеет\ 3\ нуля.\]
\[Локальный\ экстремум:\]
\[x = - 2;\ \ x = 4.\]