\[\boxed{\mathbf{57.}}\]
\[\textbf{а)}\ y = 2x^{3} - 3x^{2} - 12x + 6;\ \ \]
\[x \in R\]
\[y^{'} = 6x^{2} - 6x - 12;\]
\[6x^{2} - 6x - 12 = 0\]
\[x^{2} - 1 - 2 = 0\]
\[(x + 1)(x - 2) = 0\]
\[Критические\ точки:\]
\[x_{1} = - 1;\ \ x_{2} = 2.\]
\[Функция\ возрастает:\]
\[x \leq - 1;\ \ x \geq 2.\]
\[Функция\ убывает:\]
\[- 1 \leq x \leq 2.\]
\[\textbf{б)}\ y = x^{3} - 6x^{2} + 9x + 3;\ \ x \in R\]
\[y^{'} = 3x^{2} - 12x + 9;\]
\[3x^{2} - 12x + 9 = 0\]
\[x^{2} - 4x + 3 = 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = 2 + 1 = 3;\]
\[x_{2} = 2 - 1 = 1.\]
\[Критические\ точки:\]
\[x = 1;\ \ x = 3.\]
\[Функция\ возрастает:\]
\[x \leq 1;\ \ x \geq 3.\]
\[Функция\ убывает:\]
\[1 \leq x \leq 3.\]
\[\textbf{в)}\ y = x^{2} - 2\ln x;\ \ x > 0\]
\[y^{'} = 2x - \frac{2}{x} = \frac{2x^{2} - 2}{x};\ \ \ x \neq 0\]
\[2x^{2} - 2 = 0\]
\[2\left( x^{2} - 1 \right) = 0\]
\[x^{2} - 1 = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[Критические\ точки:\ \]
\[x = 1.\]
\[Функция\ возрастает:\]
\[x \geq 1.\]
\[Функция\ убывает:\]
\[0 < x \leq 1.\]
\[\textbf{г)}\ y = \ln x - 2x^{2};\ \ x > 0\]
\[y^{'} = \frac{1}{x} - 4x = \frac{1 - 4x^{2}}{x};\ \ x \neq 0\]
\[1 - 4x^{2} = 0\]
\[4x^{2} = 1\]
\[x^{2} = \frac{1}{4}\]
\[x = \pm \frac{1}{2}.\]
\[Критические\ точки:\]
\[x = \frac{1}{2}.\]
\[Функция\ возрастает:\]
\[0 < x \leq \frac{1}{2}.\]
\[Функция\ убывает:\]
\[x \geq \frac{1}{2}.\]