\[\boxed{\mathbf{47}\mathbf{.}}\]
\[\frac{f(b) - f(a)}{b - a} = f^{'}(c);\ \ a < b < c.\]
\[\textbf{а)}\ f(x) = x^{3};\]
\[a = - 1;\ \ b = 2;\]
\[f^{'}(c) = \frac{f(2) - f( - 1)}{2 - ( - 1)} =\]
\[= \frac{8 - ( - 1)}{3} = 3;\]
\[f^{'}(x) = 3x^{2};\]
\[3x^{2} = 3\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[c = 1 \in ( - 1;2).\]
\[Ответ:1.\]
\[\textbf{б)}\ f(x) = x^{3};\ \ \]
\[a = - 2;\ \ b = 1;\]
\[f^{'}(c) = \frac{f(1) - f( - 2)}{1 - ( - 2)} =\]
\[= \frac{1 - ( - 8)}{3} = 3;\]
\[f^{'}(x) = 3x^{2};\]
\[3x^{2} = 3\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[c = - 1 \in ( - 2;1).\]
\[\textbf{в)}\ f(x) = \sqrt[3]{x};\]
\[a = 0;\ \ b = 27;\]
\[f^{'}(c) = \frac{f(27) - f(0)}{27 - 0} =\]
\[= \frac{3 - 0}{27} = \frac{1}{9};\]
\[f^{'}(x) = \frac{1}{3}x^{- \frac{2}{3}} = \frac{1}{3\sqrt[3]{x^{2}}};\]
\[\frac{1}{3\sqrt[3]{x^{2}}} = \frac{1}{9}\]
\[\sqrt[3]{x^{2}} = 3\]
\[x^{2} = 27\]
\[x = \pm 3\sqrt{3};\]
\[c = 3\sqrt{3} \in (0;27).\]
\[Ответ:3\sqrt{3}.\]
\[\textbf{г)}\ f(x) = \sqrt[3]{x}\ ;\]
\[a = - 27;\]
\[b = 0;\]
\[f^{'}(c) = \frac{f(0) - f( - 27)}{0 + 27} =\]
\[= \frac{0 + 3}{27} = \frac{1}{9};\]
\[f^{'}(x) = \frac{1}{3}x^{- \frac{2}{3}} = \frac{1}{3\sqrt[3]{x^{2}}};\]
\[\frac{1}{3\sqrt[3]{x^{2}}} = \frac{1}{9}\]
\[\sqrt[3]{x^{2}} = 3\]
\[x^{2} = 27\]
\[x = \pm 3\sqrt{3};\]
\[c = - 3\sqrt{3} \in ( - 27;0).\]
\[Ответ: - 3\sqrt{3}.\]