Решебник по алгебре 11 класс Никольский Параграф 5. Применение производной Задание 118

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 118

\[\boxed{\mathbf{118}\mathbf{.}}\]

\[\textbf{а)}\ y = \frac{x^{2} - 3x + 1}{x^{2} + 1}\]

\[y\left( x^{2} + 1 \right) = x^{2} - 3x + 1\]

\[x^{2}(y - 1) + 3x + (y - 1) = 0\]

\[D = 9 - 4(y - 1)^{2} \geq 0\]

\[(y - 1)^{2} \leq \frac{9}{4}\]

\[|y - 1| \leq \frac{3}{2}\]

\[- \frac{1}{2} \leq y \leq \frac{5}{2}.\]

\[\textbf{б)}\ y = \frac{x^{2} - 2x + 1}{x^{2} + 3};\]

\[y\left( x^{2} + 3 \right) = x^{2} - 2x + 1\]

\[x^{2}(y - 1) + 2x + (3y - 1) = 0\]

\[D = 4 - 4(y - 1)(3y - 1) =\]

\[= 4y(4 - 3y) \geq 0\]

\[- 12y\left( y - \frac{4}{3} \right) \leq 0\]

\[0 \leq y \leq \frac{4}{3}.\]

\[\textbf{в)}\ y = \frac{x^{2} + 3x + 1}{x^{2} + 1};\]

\[y\left( x^{2} + 1 \right) = x^{2} + 3x + 1\]

\[x^{2}(y - 1) - 3x + (y - 1) = 0\]

\[D = 9 - 4(y - 1)^{2} \geq 0\]

\[(y - 1)^{2} \leq \frac{9}{4}\]

\[|y - 1| \leq \frac{3}{2}\]

\[- \frac{1}{2} \leq y \leq \frac{5}{2}.\]

\[\textbf{г)}\ y = \frac{x^{2} + 2x + 1}{x^{2} + 3};\]

\[y\left( x^{2} + 3 \right) = x^{2} + 2x + 1\]

\[x^{2}(y - 1) - 2x + (3y - 1) = 0\]

\[D = 4 - 4(y - 1)(3y - 1) =\]

\[= 4y(4 - 3y) \geq 0\]

\[- 12y\left( y - \frac{4}{3} \right) \leq 0\]

\[0 \leq y \leq \frac{4}{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!