\[\boxed{\mathbf{116}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{x}{9}(4 + x)^{3};\]
\[y^{'} = \frac{4}{9}(4 + x)^{2}(x + 1);\]
\[\frac{4}{9}(4 + x)^{2}(x + 1) = 0\]
\[x = - 4;\ \ x = - 1.\]
\[Возрастает\ на\ \lbrack - 1;\ + \infty);\]
\[убывает\ на\ ( - \infty; - 1\rbrack.\]
\[x = - 1 \rightarrow точка\ экстремума:\]
\[y( - 1) = - \frac{1}{9}(4 - 1)^{3} = - 3;\]
\[( - 1; - 3).\]
\[y^{''} = \frac{4}{3}(4 + x)(x + 2);\]
\[\frac{4}{3}(4 + x)(x + 2) = 0\]
\[x = - 4;x = - 2 \rightarrow точки\ \]
\[перегиба.\]
\[Выпукла\ вниз\ при\ ( - \infty; - 4\rbrack\ и\ \]
\[\lbrack - 2; + \infty);\]
\[выпукла\ вверх\ при\ \lbrack - 4; - 2\rbrack.\]
\[\textbf{б)}\ y = \frac{1}{x^{2}} - 2x;\]
\[y^{'} = - \frac{2}{x^{3}} - 2;\]
\[- \frac{2}{x^{3}} - 2 = 0\]
\[- \frac{2}{x^{3}} = 2\]
\[x^{3} = - 1\]
\[x = - 1.\]
\[Возрастает\ на\ \lbrack - 1;\ 0)\ и\ \]
\[(0; + \infty);\]
\[убывает\ на\ ( - \infty; - 1\rbrack.\]
\[x = - 1 \rightarrow точка\ экстремума:\]
\[y( - 1) = 1 + 2 = 3;\]
\[( - 1;3).\]
\[x = 0 - вертикальная\ \]
\[асимптота;\]
\[y = - 2x \rightarrow наклонная\ \]
\[асимптота.\]