\[\boxed{\mathbf{115}\mathbf{.}}\]
\[\textbf{а)}\ y = - 2x^{4} + 4x^{2} + 3;\ \ \]
\[\lbrack - 2;0,5\rbrack\]
\[y^{'} = - 8x^{3} + 8x;\]
\[- 8x^{3} + 8x = 0\]
\[- 8x\left( x^{2} - 1 \right) = 0\]
\[x = 0;x = \pm 1.\]
\[Возрастает\ при\ ( - \infty; - 1\rbrack\ и\ \]
\[\lbrack 0;1\rbrack;\]
\[убывает\ при\ \lbrack - 1;0\rbrack\ и\ \lbrack 1; + \infty).\]
\[y(0) = 3;\]
\[y( - 1) = 5;\]
\[y(1) = 5.\]
\[Точки\ экстремума:\]
\[( - 1;5);(0;3);(1;5).\]
\[y( - 2) = - 13;\]
\[y(0,5) = 3\frac{7}{8};\]
\[y_{наим} = - 13;\]
\[y_{наиб} = 5.\]
\[\textbf{б)}\ y = x^{3} - 3x + 3;\ \ \lbrack - 0,5;3\rbrack\]
\[y^{'} = 3x^{2} - 3;\]
\[3x^{2} - 3 = 0\]
\[3\left( x^{2} - 1 \right) = 0\]
\[x = \pm 1.\]
\[Возрастает\ при\ ( - \infty; - 1\rbrack\ и\ \]
\[\lbrack 1; + \infty);\]
\[убывает\ при\ \lbrack - 1;1\rbrack\text{\ .}\]
\[x = \pm 1 \rightarrow точки\ экстремума.\]
\[y(1) = 1;\]
\[y( - 0,5) = 4\frac{3}{8};\]
\[y(3) = 21.\]
\[y_{наим} = 1;\]
\[y_{наиб} = 21.\]
\[\textbf{в)}\ y = (x - 1)^{2}(2x + 4);\ \ \]
\[\lbrack - 2,5;1,5\rbrack\]
\[6x^{2} - 6 = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\ \]
\[Возрастает\ при\ ( - \infty; - 1\rbrack\ и\ \]
\[\lbrack 1; + \infty);\]
\[убывает\ при\ \lbrack - 1;1\rbrack\text{\ .}\]
\[x = \mp 1 \rightarrow точки\ экстремума.\]
\[y( - 2,5) = - 12,25;\]
\[y( - 1) = 8;\]
\[y(1) = 0;\]
\[y(1,5) = 1,75.\]
\[y_{наим} = - 12,25;\]
\[y_{наиб} = 8.\]
\[\textbf{г)}\ y = (2x - 4)(x + 1)^{2} =\]
\[= (2x - 4)\left( x^{2} + 2x + 1 \right) =\]
\[= 2x^{3} - 6x - 4;\ \ \lbrack - 1,5;2,5\rbrack\]
\[y^{'} = 6x^{2} - 6;\]
\[6x^{2} - 6 = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[Возрастает\ при\ ( - \infty; - 1\rbrack\ и\ \]
\[\lbrack 1; + \infty);\]
\[убывает\ при\ \lbrack - 1;1\rbrack\text{\ .}\]
\[x = \pm 1 \rightarrow точки\ экстремума.\]
\[y(2,5) = 12,25;\]
\[y(1) = - 8;\]
\[y( - 1) = 0;\]
\[y( - 1,5) = - 1,75.\]
\[y_{наим} = - 8;\]
\[y_{наиб} = 12,25.\]
\[\textbf{д)}\ y = \frac{1}{8}(x + 3)(x - 3)^{2};\lbrack - 2;1\rbrack\]
\[= \frac{1}{8}(x - 3)(3x + 3) =\]
\[= \frac{3}{8}(x - 3)(x + 1);\]
\[\frac{3}{8}(x - 3)(x + 1) = 0\]
\[x = 3;x = - 11\]
\[Возрастает\ при\ ( - \infty; - 1\rbrack\ и\ \]
\[\lbrack 3; + \infty);\]
\[убывает\ при\ \lbrack - 1;3\rbrack\text{\ .}\]
\[x = - 1;x = 3 \rightarrow точки\ \]
\[экстремума.\]
\[y( - 2) = 3\frac{1}{8};\]
\[y( - 1) = 4;\]
\[y(1) = 2.\]
\[y_{наим} = 2;\]
\[y_{наиб} = 4.\]
\[\textbf{е)}\ y = \frac{1}{4}(x - 3)(x + 3)^{2};\]
\[\lbrack - 4; - 1\rbrack\]
\[= \frac{1}{4}(x + 3)^{2} + \frac{1}{2}(x + 3)(x - 3) =\]
\[= \frac{1}{4}(x + 3)(3x - 3) =\]
\[= \frac{3}{4}(x + 3)(x - 1);\]
\[\frac{3}{4}(x + 3)(x - 1) = 0\]
\[x = - 3;\ \ x = 1.\]
\[Возрастает\ при\ ( - \infty; - 3\rbrack\ и\ \]
\[\lbrack 1; + \infty);\]
\[убывает\ при\ \lbrack - 3;1\rbrack\text{\ .}\]
\[x = - 3;x = 1 \rightarrow точки\ \]
\[экстремума.\]
\[y( - 4) = - 1б75;\]
\[y( - 3) = 0;\]
\[y( - 1) = - 4.\]
\[y_{наим} = - 4;\]
\[y_{наиб} = 0.\]