\[\boxed{\mathbf{113}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{1}{4}x^{2} \cdot (x - 4)^{2}\]
\[= \frac{1}{2}x(x - 4)(2x - 4) =\]
\[= x(x - 4)(x - 2);\]
\[f^{'}(x) = 0:\]
\[x(x - 4)(x - 2) = 0.\]
\[Критические\ точки:\]
\[x = 0;\ \ x = 4;\ \ \ x = 2.\]
\[f(0) = 0;\]
\[f(2) = 4;\]
\[f(4) = 0.\]
\[Точки\ экстремума:\]
\[(0;0);\ \ (2;4);\ \ (4;0).\]
\[Промежутки\ возрастания:\]
\[0 \leq x \leq 2;\ \]
\[x \geq 4.\]
\[Промежутки\ убывания:\]
\[x \leq 0;\ \ \]
\[2 \leq x \leq 4.\]
\[\textbf{б)}\ y = 4x^{2}(x - 2)^{2};\]
\[= 8x(x - 2)(2x - 2) =\]
\[= 16x(x - 2)(x - 1);\]
\[f^{'}(x) = 0:\]
\[16x(x - 2)(x - 1) = 0.\]
\[Критические\ точки:\]
\[x = 0;\ \ x = 2;\ \ \ x = 1.\]
\[f(0) = 0;\]
\[f(2) = 0;\]
\[f(1) = 4.\]
\[Точки\ экстремума:\]
\[(0;0);\ \ (1;4);\ \ (2;0).\]
\[Промежутки\ возрастания:\]
\[0 \leq x \leq 1;\ \]
\[x \geq 2.\]
\[Промежутки\ убывания:\]
\[x \leq 0;\ \ \]
\[1 \leq x \leq 2.\]