\[\boxed{\mathbf{111}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{- 2x + 12}{x - 4} =\]
\[= \frac{- 2(x - 4) - 8 + 12}{x - 4} =\]
\[= - \frac{2(x - 4)}{x - 4} + \frac{4}{x - 4} =\]
\[= \frac{4}{x - 4} - 2;\]
\[Асимптоты:\]
\[y = - 2;\ \ x = 4.\]
\[\textbf{б)}\ y = \left| \frac{- 2x + 12}{x - 4} \right|\]
\[\frac{- 2x + 12}{x - 4} =\]
\[= \frac{- 2(x - 4) - 8 + 12}{x - 4} =\]
\[= - \frac{2(x - 4)}{x - 4} + \frac{4}{x - 4} =\]
\[= \frac{4}{x - 4} - 2;\]
\[Асимптоты:\]
\[y = - 2;\ \ x = 4.\]
\[\textbf{в)}\ = \frac{- 2|x| + 12}{|x| - 4}\]
\[\frac{- 2x + 12}{x - 4} =\]
\[= \frac{- 2(x - 4) - 8 + 12}{x - 4} =\]
\[= - \frac{2(x - 4)}{x - 4} + \frac{4}{x - 4} =\]
\[= \frac{4}{x - 4} - 2;\]
\[Асимптоты:\]
\[y = - 2;\ \ x = 4.\]
\[\textbf{г)}\ y = \left| \frac{- 2|x| + 12}{|x| - 4} \right|\]
\[\frac{- 2x + 12}{x - 4} =\]
\[= \frac{- 2(x - 4) - 8 + 12}{x - 4} =\]
\[= - \frac{2(x - 4)}{x - 4} + \frac{4}{x - 4} =\]
\[= \frac{4}{x - 4} - 2;\]
\[Асимптоты:\]
\[y = - 2;\ \ x = 4.\]