\[\boxed{\mathbf{11}\mathbf{.}}\]
\[\textbf{а)}\ y = 2x^{3} - x^{2};\ \ \lbrack - 1;1\rbrack\]
\[f^{'}(x) = 2 \cdot 3x^{2} - 2x = 6x^{2} - 2x;\]
\[6x^{2} - 2x = 0\]
\[6x\left( x - \frac{1}{3} \right) = 0\]
\[x = 0;\ \ x = \frac{1}{3}.\]
\[f( - 1) = - 2 - 1 = - 3;\]
\[f(0) = 0;\]
\[f\left( \frac{1}{3} \right) = 2 \cdot \frac{1}{27} - \frac{1}{9} = \frac{2}{27} - \frac{3}{27} =\]
\[= - \frac{1}{27};\]
\[f(1) = 2 - 1 = 1.\]
\[\max{f(x)} = 1;\]
\[\min{f(x)} = - 3.\]
\[\textbf{б)}\ y = 2x^{3} + x;\ \ \lbrack - 1;1\rbrack\]
\[f^{'}(x) = 2 \cdot 3x^{2} + 1 = 6x^{2} + 1;\]
\[6x^{2} = - 1\]
\[нет\ корней.\]
\[f( - 1) = - 2 - 1 = - 3;\]
\[f(1) = 2 + 1 = 3.\]
\[\max{f(x)} = 3;\]
\[\min{f(x)} = - 3.\]
\[\textbf{в)}\ y = 2x^{3} + 6x^{2} + 8;\ \ \lbrack - 3;2\rbrack\]
\[f^{'}(x) = 2 \cdot 3x^{2} + 6 \cdot 2x + 0 =\]
\[= 6x^{2} + 12x;\]
\[6x^{2} + 12x = 0\]
\[6x(x + 2) = 0\]
\[x = 0;\ \ x = - 2.\]
\[f( - 3) = 2 \cdot ( - 27) + 6 \cdot 9 + 8 =\]
\[= - 54 + 54 + 8 = 8;\]
\[f( - 2) = 2 \cdot ( - 8) + 6 \cdot 4 + 8 =\]
\[= - 16 + 24 + 8 = 16;\]
\[f(0) = 8;\]
\[f(2) = 2 \cdot 8 + 6 \cdot 4 + 8 =\]
\[= 16 + 24 + 8 = 48.\]
\[\max{f(x)} = 48;\]
\[\min{f(x)} = 8.\]
\[\textbf{г)}\ y = x^{3} + 6x;\ \ \lbrack - 2;1\rbrack\]
\[f^{'}(x) = 3x^{2} + 6;\]
\[3x^{2} + 6 = 0\]
\[3x^{2} = - 6\]
\[нет\ корней.\]
\[f( - 2) = - 8 - 12 = - 20;\]
\[f(1) = 1 + 6 = 7.\]
\[\max{f(x)} = 7;\]
\[\min{f(x)} = - 20.\]