\[\boxed{\mathbf{10}\mathbf{.}}\]
\[\textbf{а)}\ y = x^{3} - 3x^{2};\ \ \lbrack - 1;3\rbrack\]
\[f^{'}(x) = 3x^{2} - 3 \cdot 2x =\]
\[= 3x^{2} - 6x;\]
\[3x^{2} - 6x = 0\]
\[3x(x - 2) = 0\]
\[x = 0;\ \ x = 2.\]
\[f( - 1) = - 4;\]
\[f(0) = 0;\]
\[f(2) = - 4;\]
\[f(3) = 0.\]
\[f(x) = - 4 \rightarrow точка\ минимума;\]
\[f(x) = 0 \rightarrow точка\ максимума.\]
\[\textbf{б)}\ y = x^{3} + 3x;\ \ \lbrack - 1;2\rbrack\]
\[f^{'}(x) = 3x^{2} + 3;\]
\[3x^{2} + 3 = 0\]
\[3\left( x^{2} + 1 \right) = 0\]
\[x^{2} = - 1\]
\[нет\ корней.\]
\[f( - 1) = - 1 - 3 = - 4;\]
\[f(2) = 8 + 6 = 14.\]
\[f(x) = - 4 \rightarrow точка\ минимума;\]
\[f(x) = 14 \rightarrow точка\ максимума.\]
\[\textbf{в)}\ y = 2x^{3} - 6x^{2} + 9;\ \ \lbrack - 2;2\rbrack\]
\[f^{'}(x) = 2 \cdot 3x^{2} - 6 \cdot 2x + 0 =\]
\[= 6x^{2} - 12x;\]
\[6x^{2} - 12x = 0\]
\[6x \cdot (x - 2) = 0\]
\[x = 0;\ \ x = 2.\]
\[f( - 2) = - 16 - 24 + 9 = - 31;\]
\[f(0) = 9;\]
\[f(2) = 16 - 24 + 9 = 1.\]
\[f(x) = - 31 \rightarrow точка\ минимума;\]
\[f(x) = 9 \rightarrow точка\ максимума.\]
\[\textbf{г)}\ y = x^{3} - 3x;\ \ \lbrack - 2;3\rbrack\]
\[f^{'}(x) = 3x^{2} - 3;\]
\[3x^{2} - 3 = 0\]
\[3\left( x^{2} - 1 \right) = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[f( - 1) = - 1 + 3 = 2;\]
\[f( - 2) = - 8 + 6 = - 2;\]
\[f(1) = 1 - 3 = - 2;\]
\[f(3) = 27 - 9 = 18.\]
\[f(x) = - 2 \rightarrow точка\ минимума;\]
\[f(x) = 18 \rightarrow точка\ максимума.\]