\[\boxed{\mathbf{109}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{4x + 2}{x - 2} = \frac{4x - 8 + 10}{x - 2} =\]
\[= \frac{4(x - 2)}{x - 2} + \frac{10}{x - 2} = \frac{10}{x - 2} + 4;\]
\[Горизонтальная\ асимптота:\]
\[\lim_{x \rightarrow + \infty}\left( \frac{10}{x - 2} + 4 \right) = 0 + 4 = 4;\]
\[\lim_{x \rightarrow - \infty}\left( \frac{10}{x - 2} + 4 \right) = 0 + 4 = 4;\]
\[y = 4.\]
\[Вертикальная\ асимптота:\]
\[x = 2.\]
\[\textbf{б)}\ y = \frac{3x - 2}{2x + 2} = \frac{3x + 3 - 5}{2x + 2} =\]
\[= \frac{3(x + 1)}{2(x + 2)} - \frac{5}{2x + 2} =\]
\[= - \frac{5}{2x + 2} + \frac{3}{2};\]
\[Горизонтальная\ асимптота:\]
\[\lim_{x \rightarrow + \infty}\left( - \frac{5}{2x + 2} + \frac{3}{2} \right) =\]
\[= 0 + \frac{3}{2} = \frac{3}{2};\]
\[\lim_{x \rightarrow - \infty}\left( - \frac{5}{2x + 2} + \frac{3}{2} \right) =\]
\[= 0 + \frac{3}{2} = \frac{3}{2};\]
\[y = \frac{3}{2}.\]
\[Вертикальная\ асимптота:\]
\[x = - 1.\]