\[\boxed{\mathbf{108}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{x + 2}{x - 2} = \frac{x - 2 + 4}{x - 2} =\]
\[= \frac{x - 2}{x - 2} + \frac{4}{x - 2} = \frac{4}{x - 2} + 1;\]
\[Горизонтальная\ асимптота:\]
\[\lim_{x \rightarrow + \infty}\left( \frac{4}{x - 2} + 1 \right) = 0 + 1 = 1;\]
\[\lim_{x \rightarrow - \infty}\left( \frac{4}{x - 2} + 1 \right) = 0 + 1 = 1;\]
\[y = 1.\]
\[Вертикальная\ асимптота:\]
\[x = 2.\]
\[\textbf{б)}\ y = \frac{x - 2}{x + 2} = \frac{x + 2 - 4}{x + 2} =\]
\[= \frac{x + 2}{x + 2} - \frac{4}{x + 2} = - \frac{4}{x + 2} - 1;\]
\[Горизонтальная\ асимптота:\]
\[\lim_{x \rightarrow + \infty}\left( - \frac{4}{x + 2} - 1 \right) = 0 + 1 = 1;\]
\[\lim_{x \rightarrow - \infty}\left( - \frac{4}{x + 2} - 1 \right) = 0 + 1 = 1;\]
\[y = 1.\]
\[Вертикальная\ асимптота:\]
\[x = - 2.\]