\[\boxed{\mathbf{107}\mathbf{.}}\]
\[\textbf{а)}\ y = \frac{x - 3}{x + 1} = \frac{x + 1 - 4}{x + 1} =\]
\[= \frac{x + 1}{x + 1} - \frac{4}{x + 1} = - \frac{4}{x + 1} + 1;\ \]
\[Горизонтальная\ асимптота:\]
\[\lim_{x \rightarrow + \infty}\left( - \frac{4}{x + 1} + 1 \right) = 0 + 1 = 1;\]
\[\lim_{x \rightarrow - \infty}\left( - \frac{4}{x + 1} + 1 \right) = 0 + 1 = 1;\]
\[y = 1.\]
\[Вертикальная\ асимптота:\]
\[x = - 1.\]
\[\textbf{б)}\ y = \frac{2x + 3}{x - 1} = \frac{2x - 2 + 5}{x - 1} =\]
\[= \frac{2x - 2}{x - 1} + \frac{5}{x - 1} =\]
\[= \frac{2(x - 1)}{x - 1} + \frac{5}{x - 1} = \frac{5}{x - 1} + 2;\]
\[Горизонтальная\ асимптота:\]
\[\lim_{x \rightarrow + \infty}\left( \frac{5}{x - 1} + 2 \right) = 0 + 2 = 2;\]
\[\lim_{x \rightarrow - \infty}\left( \frac{5}{x - 1} + 2 \right) = 0 + 2 = 2;\]
\[y = 2.\]
\[Вертикальная\ асимптота:\]
\[x = 1.\]