\[\boxed{\mathbf{9}\mathbf{.}}\]
\[\textbf{а)}\ y = e^{x^{2}} - ex^{2};\ \ \lbrack - e;e\rbrack\]
\[f^{'}(x) = 2x \cdot e^{x^{2}} - 2xe;\]
\[2x \cdot e^{x^{2}} - 2xe = 0\]
\[2x\left( e^{x^{2}} - e \right) = 0\]
\[x = 0;\]
\[e^{x^{2}} - e = 0\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[- 1;0;1 \in \lbrack - e;e\rbrack;\ \ так\ как\]
\[\ e \approx 2,72.\]
\[Ответ:\ - 1;0;\]
\[1 - критические\ точки.\]
\[\textbf{б)}\ y = e^{x^{2} - 2x};\ \ \lbrack - \pi;\ \pi\rbrack\]
\[f^{'}(x) = (2x - 2) \cdot e^{x^{2} - 2x};\]
\[(2x - 2) \cdot e^{x^{2} - 2x} = 0\]
\[2x - 2 = 0\]
\[2x = 2\]
\[x = 1.\]
\[e^{x^{2} - 2x} = 0\]
\[нет\ корней.\]
\[1 \in \lbrack - \pi;\ \pi\rbrack;так\ как\ \pi \approx 3,14.\]
\[Ответ:1 - критическая\ точка.\]
\[\textbf{в)}\ y = \frac{\ln x}{x};\ \ \ (0;\pi\rbrack\]
\[f^{'}(x) = \frac{\left( \ln x \right)^{'} \cdot x - \ln x \cdot x^{'}}{x^{2}} =\]
\[= \frac{\frac{1}{x} \cdot x - \ln x}{x^{2}} = \frac{1 - \ln x}{x^{2}};\ \]
\[\frac{1 - \ln x}{x^{2}} = 0\]
\[1 - \ln x = 0\]
\[\ln x = 1\]
\[\log_{e}x = 1\]
\[x = e.\]
\[e \in (0;\pi\rbrack.\]
\[Ответ:e - критическая\ точка.\]
\[\textbf{г)}\ y = \frac{e^{x}}{1 + x};\ \ ( - 1;\ \pi\rbrack\]
\[f^{'}(x) =\]
\[= \frac{\left( e^{x} \right)^{'} \cdot (1 + x) - e^{x} \cdot (1 + x)^{'}}{(1 + x)^{2}} =\]
\[= \frac{e^{x} \cdot (1 + x) - e^{x}}{(1 + x)^{2}} =\]
\[= \frac{e^{x}(1 + x - 1)}{(1 + x)^{2}} = \frac{xe^{x}}{(1 + x)^{2}};\]
\[\frac{xe^{x}}{(1 + x)^{2}} = 0\]
\[xe^{x} = 0\]
\[x = 0.\]
\[0 \in ( - 1;\ \pi\rbrack - критическая\]
\[\ точка.\]
\[Ответ:0 - критическая\ точка.\]