\[\boxed{\mathbf{68}\mathbf{.}}\]
\[\textbf{а)}\ y = x^{x} = e^{\ln\left( x^{x} \right)} = e^{x \cdot \ln x}\]
\[y^{'}(x) = e^{x \cdot \ln x} \cdot \left( x \cdot \ln x \right)^{'} =\]
\[= e^{x \cdot \ln x} \cdot \left( x^{'} \cdot \ln x + x \cdot \left( \ln x \right)^{'} \right) =\]
\[= e^{x \cdot \ln x} \cdot \left( 1 \cdot \ln x + x \cdot \frac{1}{x} \right) =\]
\[= e^{x \cdot \ln x} \cdot \left( \ln x + 1 \right) =\]
\[= x^{x}\left( \ln x + 1 \right).\]
\[\textbf{б)}\ y = x^{\sin x} = e^{\ln x^{\sin x}} = e^{\sin x \cdot \ln x}\]
\[y^{'} = e^{\sin x \cdot \ln x} \cdot \left( \sin x \cdot \ln x \right)^{'} =\]
\[= e^{\sin x \cdot \ln x} \cdot\]
\[\cdot \left( \left( \sin x \right)^{'} \cdot \ln x + \sin x \cdot \left( \ln x \right)^{'} \right) =\]
\[= e^{\sin x \cdot \ln x} \cdot\]
\[\cdot \left( \cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \right) =\]
\[= x^{\sin x} \cdot \left( \cos x\ln x + \frac{\sin x}{x} \right).\]
\[\textbf{в)}\ y = x^{\cos x} = e^{\ln x^{\cos x}} =\]
\[= e^{\cos x \cdot \ln x}\]
\[y^{'} = e^{\cos x \cdot \ln x} \cdot \left( \cos x \cdot \ln x \right)^{'} =\]
\[= e^{\cos x \cdot \ln x} \cdot\]
\[\cdot \left( \left( \cos x \right)^{'} \cdot \ln x + \cos x \cdot \left( \ln x \right)^{'} \right) =\]
\[= e^{\cos x \cdot \ln x} \cdot\]
\[\cdot \left( - \sin x\ln x + \cos x \cdot \frac{1}{x} \right) =\]
\[= x^{\cos x} = \left( - \sin x\ln x + \frac{\cos x}{x} \right).\]