\[\boxed{\mathbf{67}\mathbf{.}}\]
\[\textbf{а)}\ y = (x - 2)^{20};\ \ x_{1} = 1;\ \]
\[\ x_{2} = 3\]
\[y^{'}(x) = 20 \cdot (x - 2)^{19};\]
\[y^{'}(1) = 20 \cdot (1 - 2)^{19} =\]
\[= 20 \cdot ( - 1) = - 20.\]
\[y^{'}(3) = 20 \cdot (3 - 2)^{19} =\]
\[= 20 \cdot 1 = 20.\]
\[\textbf{б)}\ y = (x + 5)^{21};\ \ x_{1} = - 6;\ \ \]
\[x_{2} = - 4\]
\[y^{'}(x) = 21 \cdot (x + 5)^{20};\]
\[y^{'}( - 6) = 21 \cdot ( - 6 + 5)^{20} =\]
\[= 21 \cdot 1 = 21;\]
\[6^{'}( - 4) = 21 \cdot ( - 4 + 5)^{20} =\]
\[= 21 \cdot 1 = 21.\]
\[\textbf{в)}\ y = (2x - 11)^{100};\ \ x_{1} = 5;\]
\[\text{\ \ }x_{2} = 6\]
\[y^{'}(x) = 2 \cdot 100 \cdot (2x - 11)^{99} =\]
\[= 200 \cdot (2x - 11)^{99};\]
\[y^{'}(5) = 200 \cdot (2 \cdot 5 - 11)^{99} =\]
\[= 200 \cdot ( - 1) = - 200;\]
\[y^{'}(6) = 200 \cdot (2 \cdot 6 - 11)^{99} =\]
\[= 200 \cdot 1 = 200.\]
\[\textbf{г)}\ y = (2x - 3)^{1001};\ \ x_{1} = 1;\ \ \]
\[x_{2} = 2\]
\[y^{'}(x) = 2 \cdot 1001 \cdot (2x - 3)^{1000} =\]
\[= 2002 \cdot (2x - 3)^{1000};\]
\[y^{'}(1) = 2002 \cdot (2 \cdot 1 - 3)^{1000} =\]
\[= 2002 \cdot 1 = - 2002;\]
\[y^{'}(2) = 2002 \cdot (2 \cdot 2 - 3)^{1000} =\]
\[= 2002 \cdot 1 = 2002.\]