\[\boxed{\mathbf{50}\mathbf{.}}\]
\[y = \frac{\ln x}{x};\ \ x > 0\]
\[y^{'} = \frac{\left( \ln x \right)^{'} \cdot x - \ln x \cdot x^{'}}{x^{2}} =\]
\[= \frac{\frac{1}{x} \cdot x - \ln x}{x^{2}} = \frac{1 - \ln x}{x^{2}}.\]
\[\textbf{а)}\ \frac{1 - \ln x}{x^{2}} = 0;x \neq 0\]
\[1 - \ln x = 0\]
\[\ln x = 1\]
\[x = e.\]
\[\textbf{б)}\ \frac{1 - \ln x}{x^{2}} > 0\]
\[1 - \ln x > 0\]
\[\ln x < 1\]
\[x < e.\]
\[x \in (0;e).\]
\[\textbf{в)}\ \frac{1 - \ln x}{x^{2}} < 0\]
\[1 - \ln x < 0\]
\[\ln x > 1\]
\[x > e.\]
\[x \in (e; + \infty).\]