\[\boxed{\mathbf{49}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = \cos{2002x}\cos{2001x} +\]
\[+ \sin{2001x}\sin{2002x} =\]
\[= \cos(2002x - 2001x) = \cos x;\]
\[\ \ x \in R\]
\[f(x) = - \sin x.\]
\[\textbf{б)}\ f(x) = \sin{2002x}\cos{2001x} -\]
\[- \sin{2001x}\cos{2002x} =\]
\[= \sin(2002x - 2001x) = \sin x;\]
\[\ \ x \in R\]
\[f^{'}(x) = \cos x.\]
\[\textbf{в)}\ f(x) =\]
\[= \frac{tg\ 2002x - tg\ 2001x}{1 + tg\ 2002x \cdot tg\ 2001x} =\]
\[= tg(2002x - 2001x) = tgx;\ \ \ \ \]
\[x \neq \frac{\pi}{2} + \pi k;\ \ k \in Z\]
\[f^{'}(x) = \frac{1}{\cos^{2}x}.\]