\[\boxed{\mathbf{43}\mathbf{.}}\]
\[\textbf{а)}\ f(x) = 11^{x};\ \ x \in R\]
\[f^{'}(x) = 11^{x} \cdot \ln 11;\ \ x \in R.\]
\[\textbf{б)}\ f(x) = 10^{x};\ \ x \in R\]
\[f^{'}(x) = 10^{x} \cdot \ln 10;\ \ x \in R.\]
\[\textbf{в)}\ f(x) = 4^{x} + 8^{x} - 16^{x}\]
\[f^{'}(x) = 4^{x}\ln 4 + 8^{x}\ln 8 -\]
\[- 16^{x}\ln 16 = 4x^{x}\ln 2^{2} +\]
\[+ 8^{x}\ln 2^{3} - 16^{x}\ln 2^{4} =\]
\[= 2 \cdot 4^{x}\ln 2 + 3 \cdot 8^{x}\ln 2 -\]
\[- 4 \cdot 16^{x}\ln 2 =\]
\[= \ln 2\left( 2 \cdot 4^{x} + 3 \cdot 8^{x} - 4 \cdot 16^{x} \right);\]
\[\ \ x \in R.\]
\[\textbf{г)}\ f(x) = 3^{x} + 9^{x} - 27^{x};\ \ x \in R\]
\[f^{'}(x) = 3^{x}\ln 3 + 9^{x}\ln 9 -\]
\[- 27^{x}\ln 27 = 3^{x}\ln 3^{1} +\]
\[+ 9^{x}\ln 3^{2} - 27^{x}\ln 3^{3} =\]
\[= 3^{x}\ln 3 + 2 \cdot 9^{x}\ln 3 -\]
\[- 3 \cdot 27^{x}\ln 3 =\]
\[= \ln 3\left( 3^{x} + 2 \cdot 9^{x} - 3 \cdot 27^{x} \right);\]
\[x \in R.\]