\[\boxed{\mathbf{9}\mathbf{.}}\]
\[\textbf{а)}\ y = \sqrt{4 - x^{2}};\ \ x \in \lbrack - 2;0\rbrack\]
\[4 - x^{2} = y^{2}\]
\[x^{2} = 4 - y^{2}\]
\[x = \pm \sqrt{4 - y^{2}}\]
\[y = - \sqrt{4 - x^{2}};\ \ x \in \lbrack 0;2\rbrack.\]
\[\textbf{б)}\ y = \sqrt{4 - x^{2}};\ \ x \in \lbrack 0;2\rbrack\]
\[4 - x^{2} = y^{2}\]
\[x^{2} = 4 - y^{2}\]
\[x = \pm \sqrt{4 - y^{2}}\]
\[y = \sqrt{4 - x^{2}};\ \ x \in \lbrack 0;2\rbrack.\]
\[\textbf{в)}\ y = \sqrt{21 - x^{2} + 4x};\ \ \]
\[x \in \lbrack - 3;2\rbrack\]
\[- x^{2} + 4x + 21 = y^{2}\]
\[x^{2} - 4x - 21 = - y^{2}\]
\[\left( x^{2} - 4x + 4 \right) - 25 = - y^{2}\]
\[(x - 2)^{2} = 25 - y^{2}\]
\[x - 2 = \pm \sqrt{25 - y^{2}}\]
\[x = \pm \sqrt{25 - y^{2}} + 2\]
\[y = - \sqrt{25 - x^{2}} + 2;\ \ x \in \lbrack 0;5\rbrack.\]
\[\textbf{г)}\ y = 4 + \sqrt{16 - x^{2} + 6x};\ \ \]
\[x \in \lbrack 3;8\rbrack\]
\[- x^{2} + 6x + 16 = (y - 4)^{2}\]
\[x^{2} - 6x + 9 - 25 = - (y - 4)^{2}\]
\[(x - 3)^{2} = 25 - (y - 4)^{2}\]
\[x - 3 = \pm \sqrt{25 - (y - 4)^{2}}\]
\[x = \pm \sqrt{25 - (y - 4)^{2}} + 3\]
\[y = \sqrt{25 - (x - 4)^{2}} + 3;\ \]
\[\ x \in \lbrack 4;9\rbrack.\]
\[\textbf{д)}\ y = 8x^{3};\ \ \ X = R\]
\[x^{3} = \frac{y}{8}\]
\[x = \sqrt[3]{\frac{y}{8}} = \frac{1}{2}\sqrt[3]{y}\]
\[y = \frac{1}{2}\sqrt[3]{x}.\]
\[\textbf{е)}\ y = 0,5\sqrt{x};\ \ x \geq 0\]
\[\sqrt{x} = \frac{y}{0,5} = 2y\]
\[x = 4y^{2}\]
\[y = 4x^{2};\ \ x \geq 0.\]
\[\textbf{ж)}\ y = 3^{x - 1}\]
\[x - 1 = \log_{3}y\]
\[x = \log_{3}y + 1\]
\[y = \log_{3}x + 1;\ \ x > 0.\]
\[\textbf{з)}\ y = \left( \frac{1}{3} \right)^{x - 1}\]
\[x - 1 = \log_{\frac{1}{3}}y\]
\[x = \log_{\frac{1}{3}}y + 1\]
\[y = \log_{\frac{1}{3}}x + 1;\ \ x > 0.\]
\[\textbf{и)}\ y = \log_{5}{(x + 2)}\]
\[x + 2 = 5^{y}\]
\[x = 5^{y} - 2\]
\[y = 5^{x} - 2;\ \ X = R.\]
\[к)\ y = \log_{0,2}{(x - 1)}\ \]
\[x - 1 = (0,2)^{y}\]
\[x = (0,2)^{y} + 1\]
\[y = (0,2)^{x} + 1;\ \ X = R.\]