\[\boxed{\mathbf{19}\mathbf{.}}\]
\[\textbf{а)}\cos\left( \arccos x \right) = x;\]
\[\sin\left( \arccos x \right) = \sqrt{1 - x^{2}};\]
\[x \in \lbrack - 1;1\rbrack.\]
\[\cos a = a;\ \ |a| \leq 1:\]
\[\cos\left( \arccos a \right) = a;\]
\[\cos\left( \arccos x \right) = x.\]
\[Что\ и\ требовалось\ доказать.\]
\[\sin{(a)} = \sqrt{1 - \cos^{2}a}\]
\[\sin\left( \arccos x \right) =\]
\[= \sqrt{1 - \cos^{2}\left( \arccos x \right)} =\]
\[= \sqrt{1 - x^{2}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{б)}\ ctg\left( \arccos x \right) = \frac{x}{\sqrt{1 - x^{2}}};\ \ \ \]
\[x \in ( - 1;1)\]
\[\cos a = a;\ \ |a| \leq 1:\]
\[\cos\left( \arccos a \right) = a;\]
\[\cos\left( \arccos x \right) = x.\]
\[\text{ctg}(a) = \frac{\cos a}{\sin a};\ \ a = \arccos x;\ \]
\[\sin\left( \arccos x \right) = \sqrt{1 - x^{2}}\ :\]
\[\text{ctg}\left( \arccos x \right) = \frac{\cos\left( \arccos x \right)}{\sin\left( \arccos x \right)} =\]
\[= \frac{x}{\sqrt{1 - x^{2}}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{в)}\ tg\left( \arccos x \right) = \frac{\sqrt{1 - x^{2}}}{x};\ \ \ \]
\[x \in \lbrack - 1;0) \cup (0;1\rbrack.\]
\[tga = \frac{\sin a}{\cos a};\ \ a = \arccos x;\ \ \]
\[\sin\left( \arccos x \right) = \sqrt{1 - x^{2}};\ \]
\[\cos\left( \arccos a \right) = a:\]
\[\text{tg}\left( \arccos x \right) = \frac{\sin\left( \arccos x \right)}{\cos\left( \arccos x \right)} =\]
\[= \frac{\sqrt{1 - x^{2}}}{x}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{г)}\ tg\left( \text{arctg}(x) \right) = x;\ \ x \in R\]
\[\text{tg}(a) = a\ (из\ определения);\]
\[\text{tg}\left( \text{arctg}(a) \right) = a;\]
\[\text{tg}\left( \text{arctg}(x) \right) = x.\]
\[Что\ и\ требовалось\ доказать.\]
\[\cos\left( \text{arctg}(x) \right) = \frac{1}{\sqrt{1 + x^{2}}};\ \]
\[\ x \in R\]
\[1 + tg^{2}(a) = \frac{1}{\cos^{2}a}\]
\[\cos^{2}a = \frac{1}{1 + tg^{2}a};\]
\[a = arctg(x);\]
\[\text{tg}(a) = x.\]
\[\cos^{2}a = \frac{1}{1 + x^{2}}\]
\[\cos\left( \text{arctg}(x) \right) = \frac{1}{\sqrt{1 + x^{2}}}\]
\[Что\ и\ требовалось\ доказать.\]
\[\sin\left( \text{arctg}(x) \right) = \frac{x}{\sqrt{1 + x^{2}}};\ \ \]
\[x \in R\]
\[tga = \frac{\sin a}{\cos a}\]
\[\sin a = tga \cdot \cos a\]
\[\sin\left( \text{arctg}(x) \right) =\]
\[= tg\left( \text{arctg\ x} \right) \cdot \cos\left( \text{arctgx} \right) =\]
\[= \frac{x}{\sqrt{1 + x^{2}}}\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{д)}\ ctg\left( \text{arctg}(x) \right) = \frac{1}{x};\ \ x \neq 0\]
\[ctg\ a = \frac{1}{\text{tga}};\ \ a = arctgx;\]
\[\text{tg}(a) = x:\]
\[\text{ctg}\left( \text{arctgx} \right) = \frac{1}{x}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{е)}\ ctg\left( \text{arccot}x \right) = x;\ x \in R\]
\[\text{ctg}\left( \text{arccot}a \right) = a - из\]
\[\ определения:\]
\[\text{ctg}\left( \text{arccot}x \right) = x.\]
\[Что\ и\ требовалось\ доказать.\]
\[\sin\left( \text{arccot}x \right) = \frac{1}{\sqrt{1 + x^{2}}};\ x \in R\]
\[1 + ctg^{2}a = \frac{1}{\sin^{2}a}\]
\[\sin^{2}a = \frac{1}{1 + ctg^{2}a};\ \ \]
\[a = \text{arccot}x;\ \ ctg\ a = x:\]
\[\sin^{2}a = \frac{1}{1 + x^{2}}\]
\[\sin a = \frac{1}{\sqrt{1 + x^{2}}}\]
\[\sin\left( \text{arccot}x \right) = \frac{1}{\sqrt{1 + x^{2}}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\cos\left( \text{arccot}x \right) = \frac{x}{\sqrt{1 + x^{2}}};\ x \in R\ \]
\[\cos a = ctg\ a \cdot \sin a\]
\[a = \text{arccot}x:\]
\[\cos\left( \text{arccot}x \right) =\]
\[= ctg\left( \text{arccot}x \right) \cdot \sin\left( \text{arccot}x \right) =\]
\[= \frac{x}{\sqrt{1 + x^{2}}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{ж)}\ tg\left( \text{arccot}x \right) = \frac{1}{x}\]
\[tga = \frac{1}{\text{ctga}};\ \ a = \text{arccot}x;\ \ \]
\[\text{ctg}\left( \text{arccot}x \right) = x:\]
\[\text{tg}\left( \text{arccot}x \right) = \frac{1}{x}.\]
\[Что\ и\ требовалось\ доказать.\]