\[\boxed{\mathbf{20}\mathbf{.}}\]
\[\textbf{а)}\ y = \cos\left( \arccos x \right);\ \ \lbrack - 1;1\rbrack\]
\[y = x;\ \ \lbrack - 1;1\rbrack\]
\[\textbf{б)}\ y = \sin\left( \arccos x \right);\lbrack - 1;1\rbrack\]
\[\sin\left( \arccos x \right) = \sqrt{1 - x^{2}}\]
\[y = \sqrt{1 - x^{2}}\]
\[y^{2} = 1 - x^{2}\]
\[y^{2} + x^{2} = 1;\ \ y \in \lbrack 0;1\rbrack\]
\[\textbf{в)}\ y = tg\ \left( \arccos x \right);\ \ \]
\[D(f) = \lbrack - 1;0) \cup (0;1\rbrack.\]
\[\text{tg}\left( \arccos x \right) = \frac{\sqrt{1 - x^{2}}}{x}\]
\[y = \frac{\sqrt{1 - x^{2}}}{x} = \sqrt{\frac{1}{x^{2}} - 1}\]
\[\textbf{г)}\ y = ctg\ \left( \arccos x \right)\]
\[\text{ctg}\left( \arccos x \right) = \frac{x}{\sqrt{1 - x^{2}}};\ \ \ \]
\[x \in ( - 1;1)\]
\[y = \frac{x}{\sqrt{1 - x^{2}}}\]
\[\textbf{д)}\ y = tg\ (\arctan x)\]
\[\text{tg}\left( \text{arctg}(x) \right) = x;\ \ x \in R\]
\[y = x\]
\[\textbf{е)}\ y = ctg\ \left( \arctan x \right);\ \ x \neq 0\]
\[\text{ctg\ }\left( \arctan x \right) = \frac{1}{x}\]
\[y = \frac{1}{x}\]
\[\textbf{ж)}\ y = \sin{(\arctan x)}\]
\[\sin\left( \text{arctg}(x) \right) = \frac{x}{\sqrt{1 + x^{2}}};\ \ x \in R\]
\[y = \frac{x}{\sqrt{1 + x^{2}}}\]
\[\textbf{з)}\ y = \cos{(\arctan x)}\]
\[\cos\left( \text{arctg}(x) \right) = \frac{1}{\sqrt{1 + x^{2}}};\ \ x \in R\]
\[y = \frac{1}{\sqrt{1 + x^{2}}}\]
\[\textbf{и)}\ y = ctg\ (\text{arccot}x)\]
\[\text{ctg}\left( \text{arccot}x \right) = x;\ x \in R\]
\[y = x\]
\[к)\ y = tg\ (\text{arccot}x)\]
\[\text{tg\ }\left( \text{arccot}x \right) = \frac{1}{x};\ \ \ x \neq 0\]
\[y = \frac{1}{x}\]
\[л)\ y = \sin{(\text{arccot}x)}\]
\[\sin\left( \text{arccot}x \right) = \frac{1}{\sqrt{1 + x^{2}}};\ \ x \in R\]
\[y = \frac{1}{\sqrt{1 + x^{2}}}\]
\[м)\ y = \cos{(\text{arccot}x)}\]
\[\cos{(\text{arccot}x)} = \frac{x}{\sqrt{1 + x^{2}}};\ \ x \in R\]
\[y = \frac{x}{\sqrt{1 + x^{2}}}\]