\[\boxed{\mathbf{18}\mathbf{.}}\]
\[\text{arctg}(x) + arcctg(x) = \frac{\pi}{2}\]
\[0 < arcctg\ x < \pi\]
\[- \frac{\pi}{2} < \frac{\pi}{2} - arcctg(x) < \frac{\pi}{2}\]
\[\text{tg}\left( \frac{\pi}{2} - arcctgx \right) =\]
\[= ctg\left( \text{arcctgx} \right) = x;\]
\[\frac{\pi}{2} - arcctg\ x = arctg(x)\]
\[\text{arctg}(x) + arcctg(x) = \frac{\pi}{2}.\]
\[Что\ и\ требовалось\ доказать.\]