\[\boxed{\mathbf{6.}}\]
\[\textbf{а)}\ f(x) = x^{3};\ \ a = 1;\ \ x = R\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x > a \\ \end{matrix}}x^{3} = 1;\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x < a \\ \end{matrix}}x^{3} = 1.\]
\[\textbf{б)}\ f(x) = x^{- 2};\ \ a = \frac{1}{2};\ \ x \neq 0\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x > a \\ \end{matrix}}x^{- 2} = \left( \frac{1}{2} \right)^{- 2} = 4;\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x < a \\ \end{matrix}}x^{- 2} = \left( \frac{1}{2} \right)^{- 2} = 4.\]
\[\textbf{в)}\ f(x) = \sin x;\ \ a = \pi;\ \ x = R\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x > a \\ \end{matrix}}{\sin x} = \sin\pi = 0;\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x < a \\ \end{matrix}}{\sin x} = \sin\pi = 0.\]
\[\textbf{г)}\ f(x) = \cos x;\ \ a = \frac{\pi}{2};\ \ x = R\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x > a \\ \end{matrix}}{\cos x} = \cos\frac{\pi}{2} = 0;\]
\[\lim_{\begin{matrix} x \rightarrow a \\ x < a \\ \end{matrix}}{\cos x} = \cos\frac{\pi}{2} = 0.\]