\[\boxed{\mathbf{28.}}\]
\[x_{0} \in (0; + \infty).\]
\[\textbf{а)}\ y = \log_{2}x\]
\[f(x) = \log_{2}x;\]
\[f\left( x_{0} \right) = \log_{2}x_{0};\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}{\log_{2}x} =\]
\[= \log_{2}x_{0} = f\left( x_{0} \right);\]
\[непрерывна\ в\ любой\ точке\]
\[\ x_{0} \in (0; + \infty).\]
\[\textbf{б)}\ y = x^{- \frac{3}{2}}\]
\[f(x) = x^{- \frac{3}{2}};\]
\[f\left( x_{0} \right) = x_{0}^{- \frac{3}{2}};\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}x^{- \frac{3}{2}} = x_{0}^{- \frac{3}{2}} =\]
\[= f\left( x_{0} \right);\]
\[непрерывна\ в\ любой\ точке\ \]
\[x_{0} \in (0; + \infty).\]