\[\boxed{\mathbf{27.}}\]
\[\mathbf{x}_{\mathbf{0}}\mathbf{\in R.}\]
\[\textbf{а)}\ y = x^{2};\ \ X = R;\]
\[f(x) = x^{2};\]
\[f\left( x_{0} \right) = x_{0}^{2};\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}x^{2} = x_{0}^{2} = f\left( x_{0} \right);\]
\[непрерывна\ в\ каждой\ точке\]
\[\ x_{0} \in R.\]
\[\textbf{б)}\ y = x^{3}\]
\[f(x) = x^{3};\]
\[f\left( x_{0} \right) = x_{0}^{3};\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}x^{3} = x_{0}^{3} = f\left( x_{0} \right);\]
\[непрерывна\ в\ каждой\ точке\ \]
\[x_{0} \in R.\]
\[\textbf{в)}\ y = 2x^{3} - x^{2} + x\]
\[f(x) = 2x^{3} - x^{2} + x;\]
\[f\left( x_{0} \right) = 2x_{0}^{3} - x_{0}^{2} + x_{0};\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}{2x^{3} - x^{2} + x} =\]
\[= 2x_{0}^{3} - x_{0}^{2} + x_{0} = f\left( x_{0} \right);\]
\[непрерывна\ в\ каждой\ точке\]
\[\ x_{0} \in R.\]