\[\boxed{\mathbf{26.}}\]
\[\left( \mathbf{- \infty;\ + \infty} \right)\mathbf{.}\]
\[\textbf{а)}\ f(x) = C;\ X = R;\]
\[f\left( x_{0} \right) = C;\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}C = C = f\left( x_{0} \right);\]
\[непрерывна\ на\ всем\]
\[\ интервале.\]
\[\textbf{б)}\ f(x) = kx + b;\ \ X = R;\]
\[f\left( x_{0} \right) = kx_{0} + b;\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}(kx + b) =\]
\[= kx_{0} + b = f\left( x_{0} \right);\]
\[непрерывна\ на\ всем\ интервале.\]
\[\textbf{в)}\ f(x) = ax^{2} + bx + c;\ \ X = R;\]
\[f\left( x_{0} \right) = ax_{0} + bx_{0} + c;\]
\[\lim_{x \rightarrow x_{0}}{f(x)} = \lim_{x \rightarrow x_{0}}{ax^{2} + bx + c} =\]
\[= ax_{0}^{2} + bx_{0} + c = f\left( x_{0} \right);\]
\[непрерывна\ на\ всем\ интервале.\]