\[\boxed{\mathbf{5.}}\]
\[\sin x - 1 \geq 0\]
\[\sin x \geq 1\]
\[\sin x = 1\]
\[x = \frac{\pi}{2} + 2\pi k.\]
\[Проверка:\]
\[\left( \frac{\pi}{2} + 2\pi k \right)^{2} > 0\]
\[\left( \frac{\pi}{2} + 2\pi k \right)^{2} + 3 > 3\]
\[\log_{3}\left( \left( \frac{\pi}{2} + 2\pi k \right)^{2} + 3 \right) > 1\]
\[\log_{3}\left( \left( \frac{\pi}{2} + 2\pi k \right)^{2} + 3 \right) > 2.\]
\[Решение\ неравенства:\]
\[x = \frac{\pi}{2} + 2\pi k.\]
\[Ответ:x = \frac{\pi}{2} + 2\pi k.\]
\[\cos x - 1 \geq 0\]
\[\cos x \geq 1\]
\[\cos x = 1\]
\[x = 2\pi k.\]
\[Подставим:\]
\[\log_{3}k > 2 - 1\]
\[\log_{3}k > 1\]
\[k > 3.\]
\[Решение\ неравенства:\]
\[x = 2\pi k;\ \ k \geq 4.\]
\[Ответ:x = 2\pi k;\ \ k \geq 4.\]