Решебник по алгебре 11 класс Никольский Параграф 13. Использование свойств функции при решении уравнений и неравенств Задание 4

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 4

\[\boxed{\mathbf{4.}}\]

\[\left\{ \begin{matrix} x^{2} - 81 \geq 0 \\ 81 - x^{2} \geq 0 \\ x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - 81 \geq 0\]

\[(x + 9)(x - 9) \geq 0\]

\[x \leq - 9;\ \ x \geq 9.\]

\[81 - x^{2} \geq 0\]

\[x^{2} - 81 \leq 0\]

\[(x + 9)(x - 9) \leq 0\]

\[- 9 \leq x \leq 9.\]

\[Решения\ системы:\]

\[x = - 9;\ \ \ x = 9.\]

\[Проверка.\]

\[x = - 9:\]

\[(0 + 2)\log_{3}| - 9| - (0 + 1) > 4\]

\[3 > 4\]

\[неверно.\]

\[x = 9:\]

\[(0 + 2)\log_{3}|9| - (0 + 1) > 4\]

\[5 > 4\]

\[верно.\]

\[Ответ:x = 9.\]

\[\left\{ \begin{matrix} x^{2} - 16 \geq 0 \\ 16 - x^{2} \geq 0 \\ x^{2} - 7 > 0\ \\ \end{matrix} \right.\ \]

\[x^{2} - 16 \geq 0\]

\[x \leq - 4;\ \ x \geq 4.\]

\[16 - x^{2} \geq 0\]

\[x^{2} - 16 \leq 0\]

\[- 4 \leq x \leq 4.\]

\[x^{2} - 7 > 0\]

\[x^{2} > 7\]

\[x < - \sqrt{7};\ \ x > \sqrt{7}.\]

\[Решения\ системы:\]

\[x = - 4;\ \ x = 4.\]

\[Проверка.\]

\[x = - 4:\]

\[(0 + 2)\log_{3}9 + 2(0 + 3) < 4\]

\[8 < 0\]

\[неверно.\]

\[x = 4:\]

\[(0 + 2)\log_{3}9 - 2(0 + 3) < 4\]

\[- 4 < 0\]

\[верно.\]

\[Ответ:x = 4.\]

\[\left\{ \begin{matrix} x^{2} - 7x + 10 \geq 0 \\ 7x - x^{2} - 10 > 0 \\ \end{matrix} \right.\ \]

\[x^{2} - 7x + 10 \geq 0\]

\[x_{1} + x_{2} = 7;\ \ x_{1} \cdot x_{2} = 10\]

\[x_{1} = 2;\ \ \ x_{2} = 5;\]

\[(x - 2)(x - 5) \geq 0\]

\[x \leq 2;\ \ \ x \geq 5.\]

\[- x^{2} + 7x - 10 > 0\]

\[x^{2} - 7x + 10 < 0\]

\[2 < x < 5.\]

\[Решений\ нет.\]

\[Ответ:нет\ корней.\]

\[\left\{ \begin{matrix} x^{2} + 7x + 10 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - x^{2} - 5x - 6 \geq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - 5x + \sqrt{- x^{2} - 5x - 6} > 0 \\ \end{matrix} \right.\ \]

\[x^{2} + 7x + 10 \geq 0\]

\[x_{1} + x_{2} = - 7;\ \ \ x_{1} \cdot x_{2} = 10\]

\[x_{1} = - 5;\ \ \ x_{2} = - 2;\]

\[(x + 5)(x - 2) \geq 0\]

\[x \leq - 5;\ \ \ x \geq - 2.\]

\[- x^{2} - 5x - 6 \geq 0\]

\[x^{2} + 5x + 6 \leq 0\]

\[x_{1} + x_{2} = - 5;\ \ x_{1} \cdot x_{2} = 6\]

\[x_{1} = - 3;\ \ x_{2} = - 2;\]

\[(x + 3)(x + 2) \leq 0\]

\[- 3 \leq x \leq 2.\]

\[Система\ примет\ вид:\]

\[\left\{ \begin{matrix} x = - 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ - 5x + \sqrt{- x^{2} - 5x - 6} > 0 \\ \end{matrix} \right.\ \]

\[Подставим\ x = - 2\ \]

\[в\ неравенство:\]

\[10 + 0 > 0\]

\[10 > 0 - верно.\]

\[Проверка:\]

\[\sqrt{- 4 + 10 - 6} > - 10\]

\[0 > - 10\]

\[верно.\]

\[Ответ:x = - 2.\]

Скачать ответ
Есть ошибка? Сообщи нам!