Решебник по алгебре 11 класс Никольский Параграф 13. Использование свойств функции при решении уравнений и неравенств Задание 3

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 3

\[\boxed{\mathbf{3.}}\]

\[\textbf{а)}\ e^{\sqrt{1 - x^{2}}} + \sqrt{x^{2} - 7x - 8} \geq - 6\]

\[\left\{ \begin{matrix} 1 - x^{2} \geq 0\ \ \ \ \ \ \ \ \ \ \\ x^{2} - 7x - 8 \geq 0 \\ \end{matrix} \right.\ \]

\[1 - x^{2} \geq 0\]

\[x^{2} - 1 \leq 0\]

\[(x + 1)(x - 1) \leq 0\]

\[- 1 \leq x \leq 1.\]

\[x^{2} - 7x - 8 \geq 0\]

\[x_{1} + x_{2} = 7;\ \ x_{1} \cdot x_{2} = - 8\]

\[x_{1} = - 1;\ \ x_{2} = 8;\]

\[(x + 1)(x - 8) \geq 0\]

\[x \leq - 1;\ \ x \geq 8.\]

\[Единственное\ решение\ \]

\[системы:\]

\[x = - 1.\]

\[Проверка:\]

\[e^{0} + 0 \geq - 6\]

\[1 \geq - 6.\]

\[Ответ:x = - 1.\]

\[\textbf{б)}\ \pi^{\sqrt{4 - x^{2}}} + \sqrt{x^{2} - x - 6} \geq 6\]

\[\left\{ \begin{matrix} 4 - x^{2} \geq 0\ \ \ \ \ \ \ \\ x^{2} - x - 6 \geq 0 \\ \end{matrix} \right.\ \]

\[4 - x^{2} \geq 0\]

\[x^{2} - 4 \leq 0\]

\[(x + 2)(x - 2) \leq 0\]

\[- 2 \leq x \leq 2.\]

\[x^{2} - x - 6 \geq 0\]

\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 6\]

\[x_{1} = - 2;\ \ x_{2} = 3;\]

\[(x + 2)(x - 3) \geq 0\]

\[x \leq - 2;\ \ x \geq 3.\]

\[Единственное\ решение:\]

\[x = - 2.\]

\[Проверка:\]

\[\pi^{0} + 0 \geq 6\]

\[1 \geq 6 - неверно.\]

\[Ответ:нет\ корней\]

\[\left\{ \begin{matrix} x^{2} - 4x - 5 \geq 0\ \ \ \ \ \ \ \ \ \\ - 2x^{2} + 8x + 10 \geq 0 \\ \end{matrix} \right.\ \]

\[x^{2} - 4x - 5 \geq 0\]

\[D_{1} = 4 + 5 = 9\]

\[x_{1} = 2 + 3 = 5;\]

\[x_{2} = 2 - 3 = - 1;\]

\[(x + 1)(x - 5) \geq 0\]

\[x \leq - 1;\ \ \ x \geq 5.\]

\[- 2x^{2} + 8x + 10 \geq 0\ \ |\ :( - 2)\]

\[x^{2} - 4x - 5 \leq 0\]

\[(x + 1)(x - 5) \leq 0\]

\[- 1 \leq x \leq 5.\]

\[Решения\ системы:\]

\[x = - 1;\ \ x = 5.\]

\[Проверка.\]

\[x = 5:\]

\[0 + \lg 1 \leq 6\]

\[0 \leq 6\]

\[верно.\]

\[x = - 1:\]

\[0 + \lg 1 \leq 6\]

\[0 \leq 6\]

\[верно.\]

\[Ответ:x = - 1;\ \ x = 5.\]

\[\left\{ \begin{matrix} x^{2} - x - 6 \geq 0 \\ 4 - x^{2} \geq 0\ \ \ \ \ \ \ \ \\ 12 + x > 0\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x^{2} - x - 6 \geq 0\]

\[x_{1} + x_{2} = 1;\ \ \ x_{1} \cdot x_{2} = - 6\]

\[x_{1} = - 2;\ \ x_{2} = 3;\]

\[(x + 2)(x - 3) \geq 0\]

\[x \leq - 2;\ \ x \geq 3.\]

\[4 - x^{2} \geq 0\]

\[x^{2} - 4 \leq 0\]

\[(x + 2)(x - 2) \leq 0\]

\[- 2 \leq x \leq 2.\]

\[12 + x > 0\]

\[x > - 12.\]

\[Единственное\ решение:\]

\[x = - 2.\]

\[Проверка:\]

\[0 + 10^{0} + 5\lg 10 \leq 6\]

\[6 \leq 6\]

\[верно.\]

\[Ответ:x = - 2.\]

Скачать ответ
Есть ошибка? Сообщи нам!