\[\boxed{\mathbf{29.}}\]
\[\textbf{а)}\ \sqrt[4]{x^{3} - 7} + \sqrt[3]{x^{4} - 8} = 3\]
\[\sqrt[3]{x^{4} - 8} = 3 - \sqrt[4]{x^{3} - 7}\]
\[\sqrt[3]{x^{4} - 8}\ возрастает\ при\ x = R.\]
\[3 - \sqrt[4]{x^{3} - 7}\ убывает\ \]
\[при\ x \geq \ \sqrt[3]{7}.\]
\[x^{3} - 7 \geq 0\]
\[x^{3} \geq 7\]
\[x \geq \sqrt[3]{7}.\]
\[Единственный\ корень\ \]
\[находим\ подбором:\]
\[x = 2.\]
\[Ответ:x = 2.\]
\[\textbf{б)}\ \sqrt[5]{x^{3} + 5} + \sqrt[3]{x^{4} - 17} = 6\]
\[\sqrt[5]{x^{3} + 5} = 6 - \sqrt[3]{x^{4} - 17}\]
\[\sqrt[5]{x^{3} + 5}\ возрастает\ при\ x = R.\]
\[6 - \sqrt[3]{x^{4} - 17}\ убывает\ \]
\[при\ x = R.\]
\[Единственный\ корень\ находим\ \]
\[подбором:\]
\[x = 3.\]
\[Ответ:x = 3.\]
\[\textbf{в)}\ \sqrt{x^{3} + 8} + \sqrt{8 - x^{3}} = 4\]
\[\sqrt{x^{3} + 8} + \sqrt{8 - x^{3}} - 4 = 0\]
\[x^{3} + 8 \geq 0\]
\[x^{3} \geq - 8\]
\[x \geq - 2.\]
\[8 - x^{3} \geq 0\]
\[x^{3} \leq 8\]
\[x \leq 2.\]
\[M = \lbrack - 2;2\rbrack.\]
\[f^{'}(x) = \frac{1}{2\sqrt{x^{3} + 8}} - \frac{1}{2\sqrt{8 - x^{3}}}\]
\[\frac{1}{2\sqrt{x^{3} + 8}} - \frac{1}{2\sqrt{8 - x^{3}}} = 0\]
\[x^{3} + 8 = 8 - x^{3}\]
\[2x^{3} = 0\]
\[x = 0.\]
\[- 2 \leq x \leq 2:\]
\[f( - 2) = 0\ (наим.;\]
\[f( - 1) = \sqrt{7} - 1;\]
\[f(0) = 4\sqrt{2} - 4\ (наиб.);\]
\[f(1) = \sqrt{7} - 1;\]
\[f(2) = 0\ (наим.).\]
\[Ответ:x = \pm 2.\]
\[\textbf{г)}\ \sqrt[4]{x - 1} + \sqrt[4]{3 - x} = 2\]
\[\sqrt[4]{x - 1} + \sqrt[4]{3 - x} - 2 = 0\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[3 - x \geq 0\]
\[x \leq 3.\]
\[M = \lbrack 1;3\rbrack.\]
\[f^{'}(x) =\]
\[= \frac{1}{4\sqrt{(x - 1)^{3}}} - \frac{1}{4\sqrt{(3 - x)^{3}}}\]
\[\frac{1}{4\sqrt{(x - 1)^{3}}} - \frac{1}{4\sqrt{(3 - x)^{3}}} = 0\]
\[x - 1 = 3 - x\]
\[2x = 4\]
\[x = 2.\]
\[1 \leq x \leq 3:\]
\[f(1) = \sqrt[4]{2} - 1;\]
\[f(2) = 0\ (наиб.);\]
\[f(3) = \sqrt[4]{2} - 2.\]
\[Ответ:x = 2.\]