Решебник по алгебре 11 класс Никольский Параграф 13. Использование свойств функции при решении уравнений и неравенств Задание 26

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 26

\[\boxed{\mathbf{26.}}\]

\[x \neq \pi k;k \in Z.\]

\[\left| \sin x \right| + \frac{1}{\left| \sin x \right|} \geq 2\]

\[2 - x^{2} - \pi x - \frac{\pi^{2}}{4} =\]

\[= 2 - \left( x + \frac{\pi}{2} \right)^{2} \leq 2.\]

\[\left\{ \begin{matrix} \left| \sin x \right| + \frac{1}{\left| \sin x \right|} = 2 \\ 2 - \left( x + \frac{\pi}{2} \right)^{2} = 2\ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \left| \sin x \right| = 1 \\ x + \frac{\pi}{2} = 0 \\ \end{matrix} \right.\ \]

\[Корень\ второго\ уравнения\ \]

\[x = - \frac{\pi}{2}\ удовлетворяет\ \]

\[первому\ уравнению.\]

\[Ответ:x = - \frac{\pi}{2}.\]

\[x \neq \frac{\pi}{2} + \pi k;\ \ k \in Z.\]

\[\left| \cos x \right| + \frac{1}{\left| \cos x \right|} \geq 2;\]

\[2 - x^{2} + 2\pi x - \pi^{2} =\]

\[= 2 - (x - \pi)^{2} \leq 2.\]

\[\left\{ \begin{matrix} \left| \cos x \right| + \frac{1}{\left| \cos x \right|} = 2 \\ 2 - (x - \pi)^{2} = 2\ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \left| \cos x \right| = 1\ \ \ \ \ \\ (x - \pi)^{2} = 0 \\ \end{matrix} \right.\ \]

\[Корень\ второго\ уравнения\ \]

\[x = \pi\ удовлетворяет\ первому\ \]

\[уравнению.\]

\[Ответ:x = \pi.\]

\[\left| \text{tg\ x} \right| + \frac{1}{\left| \text{tg\ x} \right|} \geq 2;\]

\[2 - x^{2} + \frac{\text{πx}}{2} - \frac{\pi^{2}}{16} =\]

\[= 2 - \left( x - \frac{\pi}{4} \right)^{2} \leq 2;\]

\[\left\{ \begin{matrix} \left| \text{tg\ x} \right| + \frac{1}{|tg\ x|} = 2 \\ 2 - \left( x - \frac{\pi}{4} \right)^{2} = 2\ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \left| \text{tg\ x} \right| = 1\ \ \ \ \ \\ \left( x - \frac{\pi}{4} \right)^{2} = 0 \\ \end{matrix} \right.\ \]

\[Корень\ второго\ уравнения\ \]

\[x = \frac{\pi}{4}\ удовлетворяет\ первому\ \]

\[уравнению.\]

\[Ответ:x = \frac{\pi}{4}.\]

\[\left| \text{ctg\ x} \right| + \frac{1}{\left| \text{ctg\ x} \right|} \geq 2;\]

\[2 - x^{2} - \frac{\text{πx}}{2} - \frac{\pi^{2}}{16} =\]

\[= 2 - \left( x + \frac{\pi}{4} \right)^{2} \leq 2;\]

\[\left\{ \begin{matrix} \left| \text{ctg\ x} \right| + \frac{1}{\left| \text{ctg\ x} \right|} = 2 \\ 2 - \left( x + \frac{\pi}{4} \right)^{2} = 2\ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\left\{ \begin{matrix} \left| \text{ctg\ x} \right| = 1\ \ \ \ \\ \left( x + \frac{\pi}{4} \right)^{2} = 0 \\ \end{matrix} \right.\ \]

\[Корень\ второго\ уравнения\ \]

\[x = - \frac{\pi}{4}\ удовлетворяет\ \]

\[первому\ уравнению.\]

\[Ответ:x = - \frac{\pi}{4}.\]

Скачать ответ
Есть ошибка? Сообщи нам!