\[\boxed{\mathbf{25.}}\]
\[\left( \sqrt[4]{\sin x + 2} - \sqrt[4]{\cos x + 2} \right)^{2} \leq 0\]
\[\sqrt[4]{\sin x + 2} - \sqrt[4]{\cos x + 2} = 0\]
\[\sqrt[4]{\sin x + 2} = \sqrt[4]{\cos x + 2}\]
\[\sin x + 2 = \cos x + 2\]
\[\sin x = \cos x\]
\[tgx = 1\]
\[x = \frac{\pi}{4} + \pi k.\]
\[Ответ:x = \frac{\pi}{4} + \pi k.\]
\[\left( \sqrt[4]{\sin x + 2} - \sqrt[4]{\cos x + 3} \right)^{2} \leq 0\]
\[\sqrt[4]{\sin x + 2} - \sqrt[4]{\cos x + 3} = 0\]
\[\sqrt[4]{\sin x + 2} = \sqrt[4]{\cos x + 3}\]
\[\sin x + 2 = \cos x + 3\]
\[\sin x - \cos x = 1\]
\[1)\ \left\{ \begin{matrix} \sin x = 1 \\ \cos x = 0 \\ \end{matrix} \right.\ \]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[2)\ \left\{ \begin{matrix} \sin x = 0\ \ \ \ \\ \cos x = - 1 \\ \end{matrix} \right.\ \]
\[x = \pi + 2\pi n.\]
\[Ответ:x = \frac{\pi}{2} + 2\pi n;\]
\[x = \pi + 2\pi n.\]