\[\boxed{\mathbf{22.}}\]
\[\textbf{а)}\ \frac{\sqrt{\sin^{2}x + 5} + \sqrt{\cos^{2}x + 4}}{2} =\]
\[= \sqrt[4]{\left( \sin^{2}x + 5 \right)\left( \cos^{2}x + 4 \right)}\]
\[\left( \sqrt[4]{\text{si}n^{2}x + 5} - \sqrt[4]{\text{co}s^{2}x + 4} \right)^{2} =\]
\[= 0\]
\[\sqrt[4]{\text{si}n^{2}x + 5} - \sqrt[4]{\text{co}s^{2}x + 4} = 0\]
\[\sqrt[4]{\text{si}n^{2}x + 5} = \sqrt[4]{\text{co}s^{2}x + 4}\]
\[\text{si}n^{2}x + 5 = cos^{2}x + 4\]
\[\text{co}s^{2}x - sin^{2}x = 1\]
\[\cos{2x} = 1\]
\[2x = 2\pi n\]
\[x = \pi n.\]
\[Ответ:x = \pi n.\]
\[\sqrt[4]{\left( \sin^{2}x + \sin x + 5 \right)} =\]
\[= \sqrt[4]{\left( \sin x + 6 \right)}\]
\[\sin^{2}x + \sin x + 5 = \sin x + 6\]
\[\text{si}n^{2}x = 1\]
\[\frac{1 - \cos{2x}}{2} = 1\]
\[1 - \cos{2x} = 2\]
\[\cos{2x} = - 1\]
\[2x = \pi + 2\pi n\]
\[x = \frac{\pi}{2} + \pi n.\]
\[Ответ:x = \frac{\pi}{2} + \pi n.\]
\[\textbf{в)}\ \sqrt{3\log_{2}^{2}x + 5} + \sqrt{\log_{2}^{4}x + 1} =\]
\[= 2\sqrt[4]{\left( 3\log_{2}^{2}x + 5 \right)\left( \log_{2}^{4}x + 1 \right)}\]
\[\sqrt[4]{\left( 3\log_{2}^{2}x + 5 \right)} = \sqrt[4]{\left( \log_{2}^{4}x + 1 \right)}\]
\[3\log_{2}^{2}x + 5 = \log_{2}^{4}x + 1\]
\[\log_{2}^{4}x - 3\log_{2}^{2}x - 4 = 0\]
\[\log_{2}^{2}x = y:\]
\[y^{2} - 3y - 4 = 0\]
\[y_{1} + y_{2} = 3;\ \ y_{1} \cdot y_{2} = - 4\]
\[y_{1} = - 1;\ \ \ y_{2} = 4.\]
\[\log_{2}^{2}x = - 1\]
\[нет\ корней.\]
\[\log_{2}^{2}x = 4\]
\[\log_{2}x = \pm 2.\]
\[x_{1} = \frac{1}{4};\ \ x_{2} = 4.\]
\[Ответ:\ \ x = \frac{1}{4};\ \ x = 4.\]
\[\textbf{г)}\ \sqrt{2 - \frac{1}{2}\lg^{2}x} + \sqrt{\lg^{4}x + \frac{1}{2}} =\]
\[= 2\sqrt[4]{\left( 2 - \frac{1}{2}\lg^{2}x \right)\left( \lg^{4}x + \frac{1}{2} \right)}\]
\[M = (0; + \infty).\]
\[\sqrt[4]{\left( 2 - \frac{1}{2}\lg^{2}x \right)} = \sqrt[4]{\left( \lg^{4}x + \frac{1}{2} \right)}\ \]
\[2 - \frac{1}{2}\lg^{2}x = \lg^{4}x + \frac{1}{2}\]
\[\lg^{4}x + \frac{1}{2}\lg^{2}x - \frac{3}{2} = 0\ \ | \cdot 2\]
\[{2\lg^{4}}x + \lg^{2}x - 3 = 0\]
\[\lg^{2}x = y:\]
\[D = 1 + 24 = 25\]
\[y_{1} = \frac{- 1 + 5}{4} = 1;\]
\[y_{2} = \frac{- 1 - 5}{4} =\]
\[= - 1,5\ (не\ подходит).\]
\[\lg^{2}x = 1\]
\[\lg x = \pm 1.\]
\[x = \frac{1}{10};\ \ x = 10.\]
\[Ответ:\ \ x = 0,1;x = 10.\]