\[\boxed{\mathbf{23.}}\]
\[\textbf{а)}\ tg^{2}x + ctg^{2}x =\]
\[= 2\sin^{2}\sqrt{\frac{5\pi^{2}}{16} - x^{2}}\]
\[tg^{2}x + \frac{1}{tg^{2}x} = 2\sin^{2}\sqrt{\frac{5\pi^{2}}{16} - x^{2}}\]
\[tg^{2}x + \frac{1}{tg^{2}x} \geq 2;\]
\[2\sin^{2}\sqrt{\frac{5\pi^{2}}{16} - x^{2}} \leq 2;\]
\[\left\{ \begin{matrix} tg^{2}x + \frac{1}{tg^{2}x} = 2\ \ \ \ \ \ \ \ \ \\ 2\sin^{2}\sqrt{\frac{5\pi^{2}}{16} - x^{2}} = 2 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} tg^{2}x = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \sin^{2}\sqrt{\frac{5\pi^{2}}{16} - x^{2}} = 1 \\ \end{matrix} \right.\ \]
\[tg^{2}x = 1\]
\[tgx = \pm 1\]
\[x = \pm \frac{\pi}{4} + \pi k.\]
\[\sin^{2}\sqrt{\frac{5\pi^{2}}{16} - x^{2}} = 1\]
\[Проверим\ x = - \frac{\pi}{4};n = 0:\]
\[Проверим\ x = \frac{\pi}{4};\ \ n = 0:\]
\[Ответ:x = \pm \frac{\pi}{4}.\]
\[\textbf{б)}\ \frac{\cos^{2}{2x}}{\sin^{8}x} + \frac{\sin^{8}x}{\cos^{2}{2x}} =\]
\[= 2\cos^{2}\sqrt{\frac{\pi^{2}}{4} - x^{2}}\]
\[\frac{\cos^{2}{2x}}{\sin^{8}x} + \frac{1}{\frac{\cos^{2}{2x}}{\sin^{8}x}} =\]
\[= 2\cos^{2}\sqrt{\frac{\pi^{2}}{4} - x^{2}}\]
\[\frac{\cos^{2}{2x}}{\sin^{8}x} + \frac{1}{\frac{\cos^{2}{2x}}{\sin^{8}x}} \geq 2;\]
\[2\cos^{2}\sqrt{\frac{\pi^{2}}{4} - x^{2}} \leq 2;\]
\[\left\{ \begin{matrix} \frac{\cos^{2}{2x}}{\sin^{8}x} + \frac{1}{\frac{\cos^{2}{2x}}{\sin^{8}x}} = 2 \\ 2\cos^{2}\sqrt{\frac{\pi^{2}}{4} - x^{2}} = 2\ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \frac{\cos^{2}{2x}}{\sin^{8}x} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \cos^{2}\sqrt{\frac{\pi^{2}}{4} - x^{2}} = 1 \\ \end{matrix} \right.\ \]
\[\cos^{2}{2x} = \sin^{8}x.\]
\[\cos^{2}\sqrt{\frac{\pi^{2}}{4} - x^{2}} = 1\]
\[Проверим\ x = - \frac{\pi}{2}:\]
\[Проверим\ x = \frac{\pi}{2}:\]
\[Ответ:x = \pm \frac{\pi}{2}.\]