\[\boxed{\mathbf{20.}}\]
\[- x^{2} + 6x - 8 > 0\]
\[x^{2} - 6x + 8 < 0\]
\[D_{1} = 9 - 8 = 1\]
\[x_{1} = 3 + 1 = 4;\]
\[x_{2} = 3 - 1 = 2;\]
\[2 < x < 4.\]
\[M = (2;4).\]
\[\log_{0,2}\left( - x^{2} + 6x - 8 \right) > 0\]
\[\log_{0,2}\left( - x^{2} + 6x - 8 \right) > \log_{0,2}1\]
\[- x^{2} + 6x - 8 < 1\]
\[x^{2} - 6x + 9 > 0\]
\[(x - 3)^{2} > 0\]
\[x \neq 3.\]
\[M_{1} = (2;3) \cup (3;4) - не\ имеет\ \]
\[решений.\]
\[При\ x = 3:\]
\[\log_{0,2}1 \leq 0\]
\[0 \leq 0.\]
\[Ответ:x = 3.\]
\[0 \leq cos^{2}x \leq 1\]
\[0 \leq 3cos^{2}x \leq 3.\]
\[\left| \log_{5}\left( x^{2} - 4x + 1 \right) \right| \geq 0\]
\[3 + \left| \log_{5}\left( x^{2} - 4x + 1 \right) \right| \geq 3.\]
\[Равносильная\ система\ \]
\[уравнений:\]
\[\left\{ \begin{matrix} 3 + \left| \log_{5}\left( x^{2} - 4x + 1 \right) \right| = 3 \\ 3cos^{2}x = 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} \left| \log_{5}\left( x^{2} - 4x + 1 \right) \right| = 0 \\ \text{co}s^{2}x = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left| \log_{5}\left( x^{2} - 4x + 1 \right) \right| = 0\]
\[\left| \log_{5}\left( x^{2} - 4x + 1 \right) \right| = \log_{5}1\]
\[x^{2} - 4x + 1 = 1\]
\[x^{2} - 4x = 0\]
\[x(x - 4) = 0\]
\[x = 0;\ \ x = 4.\]
\[Проверим:\]
\[\text{co}s^{2}x = cos^{2}0 = 1.\]
\[\text{co}s^{2}x = cos^{2}4 \neq 1.\]
\[Ответ:x = 0.\]