\[\boxed{\mathbf{19.}}\]
\[\textbf{а)}\log_{2}{(x + 2)} > 1 - x\]
\[x + 2 > 0\]
\[x > - 2.\]
\[M_{1} = ( - 2;\ + \infty).\]
\[\log_{2}(x + 2) > 0\]
\[x + 2 > 1\]
\[x > - 1.\]
\[M_{2} = ( - 1;\ + \infty).\]
\[\log_{2}(x + 2) < 0\]
\[0 < x + 2 < 1\]
\[- 2 < x < - 1\]
\[M_{3} = ( - 2;\ - 1).\]
\[1 - x < 0\]
\[x < 1\]
\[M_{4} = (1; + \infty)\text{.\ }\]
\[1 - x > 0\]
\[M_{5} = ( - 2;1).\]
\[Проверим\ M_{4} = (1; + \infty):\]
\[\left\{ \begin{matrix} \log_{2}(x + 2) > 0 \\ x > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[x + 2 > 1\]
\[x > - 1 \rightarrow удовлетворяет.\]
\[Проверим\ M_{3} = ( - 2; - 1):\]
\[\left\{ \begin{matrix} \log_{2}(x + 2) < 0 \\ 1 - x > 0\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} - 2 < x < - 1 \\ - 2 < x < 1\ \ \ \ \\ \end{matrix} \right.\ \]
\[нет\ решений.\]
\[Проверим\ ( - 1 < x < 0):\]
\[\log_{2}(x + 2) < 1;\]
\[1 - x < 1\]
\[нет\ корней.\]
\[Проверим\ (0 < x < 1):\]
\[\log_{2}(x + 2) > 1;\]
\[1 - x > 1\]
\[Удовлетворяет.\]
\[Объединим\ решения:\]
\[x \in (0;1) \cup (1; + \infty).\]
\[\textbf{б)}\log_{2}{(x + 4)} < - 1 - x\]
\[x + 4 > 0\]
\[x > - 4.\]
\[M = ( - 4; + \infty).\]
\[1)\ \left\{ \begin{matrix} \log_{2}{(x + 4)} > 0 \\ - 1 - x < 0\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > - 3 \\ x > - 1 \\ \end{matrix} \right.\ \]
\[M_{1} = ( - 1; + \infty)\]
\[\log_{2}(x + 4) > 0;\]
\[решений\ нет.\]
\[2)\ \left\{ \begin{matrix} \log_{2}{(x + 4)} < 0 \\ - 1 - x > 0\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < - 3 \\ x < - 1 \\ \end{matrix} \right.\ \]
\[M_{2} = ( - 4; - 3) - решение\ \]
\[неравенства.\]
\[3)\ \left\{ \begin{matrix} \log_{2}{(x + 4)} < 1 \\ - 1 - x > 1\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[M_{3} = ( - 3; - 2) - решение\ \]
\[неравенства.\]
\[4)\ \left\{ \begin{matrix} \log_{2}{(x + 4)} > 1 \\ - 1 - x < 1\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[M_{4} = ( - 2; - 1) - не\ является\ \]
\[решением.\]
\[Объединим:\]
\[x \in ( - 4; - 3) \cup ( - 3; - 2).\]
\[Ответ:x \in ( - 4; - 3) \cup ( - 3; - 2).\]
\[\textbf{в)}\log_{0,5}{(x - 2)} > x - 3\]
\[x - 2 > 0\]
\[x > 2.\]
\[M = (2; + \infty).\]
\[1)\ \left\{ \begin{matrix} \log_{0,5}{(x - 2)} > 0 \\ x - 3 < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x - 2 < 1 \\ x - 3 < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < 3 \\ x < 3 \\ \end{matrix} \right.\ \]
\[M_{1} = (2;3) - является\ \]
\[решением.\]
\[2)\ \left\{ \begin{matrix} \log_{0,5}{(x - 2)} < 0 \\ x - 3 > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > 3 \\ x > 3 \\ \end{matrix} \right.\ \]
\[M_{2} = (3; + \infty) - не\ является\ \]
\[решением.\]
\[Объединим:\]
\[x \in (2;3).\]
\[Ответ:\ x \in (2;3).\]
\[\textbf{г)}\log_{0,5}{(x + 2)} < x - 1\]
\[x + 2 > 0\]
\[x > - 2.\]
\[M = ( - 2;\ + \infty).\]
\[1)\ \left\{ \begin{matrix} \log_{0,5}(x + 2) > 0 \\ x - 1 < 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x + 2 < 1 \\ x - 1 < 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x < - 1 \\ x < 1\ \ \ \\ \end{matrix} \right.\ \]
\[M_{1} = ( - 2; - 1) - не\ является\ \]
\[решением.\]
\[2)\ \left\{ \begin{matrix} \log_{0,5}{(x + 2)} < 0 \\ x - 1 > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x + 2 > 1 \\ x - 1 > 0 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x > - 1 \\ x > 1\ \ \ \\ \end{matrix} \right.\ \]
\[M_{2} = (1; + \infty) - не\ является\ \]
\[решением.\]
\[Ответ:не\ имеет\ решений.\]