\[\boxed{\mathbf{13.}}\]
\[\textbf{а)}\lg\left( x^{2} + 1 \right) + 1 = \cos\text{πx}\]
\[\lg\left( x^{2} + 1 \right) = \cos\text{πx} - 1\]
\[\lg\left( x^{2} + 1 \right) \geq 0;\]
\[\cos\text{πx} - 1 \leq 0.\]
\[\left\{ \begin{matrix} \lg\left( x^{2} + 1 \right) = 0 \\ \cos\text{πx} - 1 = 0 \\ \end{matrix} \right.\ \]
\[\lg\left( x^{2} + 1 \right) = \lg 1\]
\[x^{2} + 1 = 1\]
\[x^{2} = 0\]
\[x = 0.\]
\[Проверим:\]
\[\cos(\pi \cdot 0) - 1 = 0\]
\[1 - 1 = 0\]
\[0 = 0.\]
\[Ответ:x = 0.\]
\[\textbf{б)}\lg\left( 1 + |x - 2| \right) + 2 =\]
\[= \left| 1 + \cos\text{πx} \right|\]
\[\lg\left( 1 + |x - 2| \right) =\]
\[= \left| 1 + \cos\text{πx} \right| - 2\]
\[\lg\left( 1 + |x - 2| \right) \geq 0;\]
\[\left| 1 + \cos\text{πx} \right| - 2 \leq 0.\]
\[\left\{ \begin{matrix} \lg\left( 1 + |x - 2| \right) = 0\ \ \\ \left| 1 + \cos\text{πx} \right| - 2 = 0 \\ \end{matrix} \right.\ \]
\[\lg\left( 1 + |x - 2| \right) = \lg 1\]
\[1 + |x - 2| = 1\]
\[|x - 2| = 0\]
\[x = 2.\]
\[Проверим:\]
\[\left| 1 + \cos{\pi \cdot 2} \right| - 2 = 0\]
\[|1 + 1| - 2 = 0\]
\[2 - 2 = 0\]
\[0 = 0.\]
\[Ответ:x = 2.\]
\[\textbf{в)}\ 3 - \lg\left( x^{2} - 10x + 26 \right) =\]
\[= \sqrt{x^{2} - 10x + 34}\]
\[3 - \lg\left( (x - 5)^{2} + 1 \right) =\]
\[= \sqrt{(x - 5)^{2} + 9}\]
\[\lg\left( (x - 5)^{2} + 1 \right) \geq 0\]
\[3 - \lg\left( (x - 5)^{2} + 1 \right) \leq 3.\]
\[\sqrt{(x - 5)^{2}} \geq 0\]
\[\sqrt{(x - 5)^{2} + 9} \geq 3.\]
\[\left\{ \begin{matrix} 3 - \lg\left( (x - 5)^{2} + 1 \right) = 3 \\ \sqrt{(x - 5)^{2} + 9} = 3\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[- \lg\left( (x - 5)^{2} + 1 \right) = 3 - 3\]
\[\lg\left( (x - 5)^{2} + 1 \right) = 0\]
\[\lg\left( (x - 5)^{2} + 1 \right) = \lg 1\]
\[(x - 5)^{2} + 1 = 1\]
\[(x - 5)^{2} = 0\]
\[x = 5.\]
\[Проверим:\]
\[\sqrt{(5 - 5)^{2} + 9} = \sqrt{9} = 3.\]
\[Ответ:x = 5.\]
\[\textbf{г)}\ 2 - \lg\left( 1 + |x - 6| \right) =\]
\[= \sqrt{x^{2} - 12x + 40}\]
\[2 - \lg\left( 1 + |x - 6| \right) =\]
\[= \sqrt{(x - 6)^{2} + 4}\]
\[\lg\left( 1 + |x - 6| \right) \geq 0\]
\[2 - \lg\left( 1 + |x - 6| \right) \leq 2.\]
\[\sqrt{(x - 6)^{2}} \geq 0\]
\[\sqrt{(x - 6)^{2} + 4} \geq 2\]
\[\left\{ \begin{matrix} 2 - \lg\left( 1 + |x - 6| \right) = 2 \\ \sqrt{(x - 6)^{2} + 4} = 2\ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[(x - 6)^{2} + 4 = 4\]
\[(x - 6)^{2} = 0\]
\[x = 6.\]
\[Проверим:\]
\[2 - \lg\left( 1 + |6 - 6| \right) = 2 - \lg 1 =\]
\[= 2 - 0 = 2.\]
\[Ответ:x = 6.\]