\[\boxed{\mathbf{12.}}\]
\[\left\{ \begin{matrix} x^{3} + x^{2} = 0\ \ \ \ \ \ \ \ \ \\ x^{2} + x = 0\ \ \ \ \ \ \ \ \ \ \ \\ (x + 1)^{2} + 1 = 0 \\ \end{matrix} \right.\ \]
\[(x + 1)^{2} + 1 = 0\]
\[(x + 1)^{2} = - 1\]
\[Ответ:нет\ корней.\]
\[\left\{ \begin{matrix} x^{3} + x^{2} = 0 \\ x^{2} + x = 0\ \ \\ x + 2 = 0\ \ \ \ \\ \end{matrix} \right.\ \]
\[x + 2 = 0\]
\[x = - 2.\]
\[Проверим:\]
\[( - 2)^{3} + ( - 2)^{2} = - 8 + 4 =\]
\[= - 4 \neq 0.\]
\[( - 2)^{2} + ( - 2) = 4 + ( - 2) =\]
\[= 2 \neq 0.\]
\[Ответ:нет\ корней.\]