\[\boxed{\mathbf{14.}}\]
\[\textbf{а)}\ x^{2} - \pi x + \frac{\pi^{2}}{4} = \sin x - 1\]
\[\left( x - \frac{\pi}{2} \right)^{2} = \sin x - 1\]
\[x - \frac{\pi}{2} \geq 0;\]
\[\sin x - 1 \leq 0.\]
\[\left\{ \begin{matrix} \left( x - \frac{\pi}{2} \right)^{2} = 0 \\ \sin x - 1 = 0 \\ \end{matrix} \right.\ \]
\[x - \frac{\pi}{2} = 0\]
\[x = \frac{\pi}{2}.\]
\[Проверим:\]
\[\sin\frac{\pi}{2} - 1 = 1 - 1 = 0.\]
\[Ответ:x = \frac{\pi}{2}.\]
\[\textbf{б)}\ x^{2} - 4\pi x + 4\pi^{2} = \cos x - 1\]
\[(x - 2\pi)^{2} = \cos x - 1\]
\[(x - 2\pi)^{2} \geq 0;\]
\[\cos x - 1 \leq 0.\]
\[\left\{ \begin{matrix} (x - 2\pi)^{2} = 0 \\ \cos x - 1 = 0\ \\ \end{matrix} \right.\ \]
\[x - 2\pi = 0\]
\[x = 2\pi.\]
\[Проверим:\]
\[\cos{2\pi} - 1 = 1 - 1 = 0.\]
\[Ответ:x = 2\pi.\]
\[\textbf{в)}\ x^{2} + 2\pi x + \pi^{2} = \sin x - 1\]
\[(x + \pi)^{2} = \sin x - 1\]
\[(x + \pi)^{2} \geq 0;\]
\[\sin x - 1 \leq 0.\]
\[\left\{ \begin{matrix} (x + \pi)^{2} = 0 \\ \sin x - 1 = 0 \\ \end{matrix} \right.\ \]
\[(x + \pi)^{2} = 0\]
\[x + \pi = 0\]
\[x = - \pi.\]
\[Проверим:\]
\[\sin( - \pi) - 1 = 0 - 1 = - 1 \neq 0.\]
\[Не\ удовлетворяет.\]
\[Ответ:нет\ корней.\]
\[\textbf{г)}\ x^{2} - 2\pi x + \pi^{2} = \cos x - 1\]
\[(x - \pi)^{2} = \cos x - 1\]
\[(x - \pi)^{2} \geq 0;\]
\[\cos x - 1 \leq 0.\]
\[\left\{ \begin{matrix} (x - \pi)^{2} = 0\ \\ \cos x - 1 = 0 \\ \end{matrix} \right.\ \]
\[(x - \pi)^{2} = 0\]
\[x - \pi = 0\]
\[x = \pi.\]
\[Проверим:\]
\[\cos\pi - 1 = - 1 - 1 = - 2 \neq 0.\]
\[Не\ удовлетворяет.\]
\[Ответ:нет\ корней.\]