\[\boxed{\mathbf{11.}}\]
\[При\ x = R:\]
\[x^{2} - 8x + 15 \geq 0;\]
\[\lg\left( (x - 5)^{2} + 1 \right) \geq 0.\]
\[Неравенство\ равносильно\ \]
\[системе\ уравнений:\]
\[\left\{ \begin{matrix} x^{2} - 8x + 15 = 0\ \ \ \ \ \ \\ \lg\left( (x - 5)^{2} + 1 \right) = 0 \\ \end{matrix} \right.\ \]
\[(x - 5)^{2} + 1 = 1\]
\[(x - 5)^{2} = 0\]
\[x = 5.\]
\[Проверим:\]
\[x^{2} - 18x + 15 =\]
\[= 5^{2} - 8 \cdot 5 + 15 =\]
\[= 25 - 40 + 15 = 0.\]
\[Ответ:x = 5.\]
\[При\ x = R:\]
\[x^{2} - 6x + 8 \geq 0;\]
\[\lg\left( (x - 4)^{2} + 1 \right) \geq 0.\]
\[Неравенство\ равносильно\ \]
\[системе\ уравнений:\]
\[\left\{ \begin{matrix} x^{2} - 6x + 8 = 0\ \ \ \ \ \ \ \ \\ \lg\left( (x - 4)^{2} + 1 \right) = 0 \\ \end{matrix} \right.\ \]
\[(x - 4)^{2} + 1 = 1\]
\[(x - 4)^{2} = 0\]
\[x = 4.\]
\[Проверим:\]
\[x^{2} - 6x + 8 = 4^{2} - 6 \cdot 4 + 8 =\]
\[= 16 - 24 + 8 = 0.\]
\[Ответ:x = 4.\]