\[\boxed{\mathbf{10.}}\]
\[При\ x = R:\]
\[\left( x^{2} + 4x - 21 \right) \geq 0;\]
\[\lg\left( (x - 3)^{2} + 1 \right) \geq 0.\]
\[Неравенство\ равносильно\ \]
\[системе\ уравнений:\]
\[\left\{ \begin{matrix} x^{2} + 4x - 21 = 0\ \ \ \ \ \\ \lg\left( (x - 3)^{2} + 1 \right) = 0 \\ \end{matrix} \right.\ \]
\[(x - 3)^{2} + 1 = 1\]
\[(x - 3)^{2} = 0\]
\[x = 3.\]
\[Проверим:\]
\[x^{2} + 4x - 21 = 3^{2} + 4 \cdot 3 - 21 =\]
\[= 9 + 12 - 21 = 0.\]
\[Ответ:x = 3.\]
\[При\ x = R:\]
\[\left( x^{2} - 3x - 4 \right)^{2} \geq 0;\]
\[\lg\left( (x - 4)^{2} + 1 \right) \geq 0.\]
\[Неравенство\ равносильно\ \]
\[системе\ уравнений:\]
\[\left\{ \begin{matrix} x^{2} - 3x - 4 = 0\ \ \ \ \ \ \ \ \\ \lg\left( (x - 4)^{2} + 1 \right) = 0 \\ \end{matrix} \right.\ \]
\[(x - 4)^{2} + 1 = 1\]
\[(x - 4)^{2} = 0\]
\[x = 4.\]
\[Проверим:\]
\[x^{2} - 3x - 4 = 4^{2} - 3 \cdot 4 - 4 =\]
\[= 16 - 16 = 0.\]
\[Ответ:x = 4.\]