\[\boxed{\mathbf{6.}}\]
\[\textbf{а)}\ \sqrt{3x - 2} < x\]
\[3x - 2 \geq 0\]
\[3x \geq 2\]
\[x \geq \frac{2}{3}.\]
\[M = \left\lbrack \frac{2}{3}; + \infty \right).\]
\[3x - 2 < x^{2}\ \]
\[x^{2} - 3x + 2 > 0\]
\[x_{1} + x_{2} = 3;\ \ x_{1} \cdot x_{2} = 2\]
\[x_{1} = 1;\ \ x_{2} = 2;\]
\[(x - 1)(x - 2) > 0\]
\[x < 1;\ \ \ x > 2.\]
\[x \in \left\lbrack \frac{2}{3};1 \right) \cup (2; + \infty).\]
\[Ответ:\ x \in \left\lbrack \frac{2}{3};1 \right) \cup (2; + \infty).\]
\[\textbf{б)}\ \sqrt{4x - 3} < x\]
\[4x - 3 \geq 0\]
\[4x \geq 3\]
\[x \geq \frac{3}{4}.\]
\[M = \left\lbrack \frac{3}{4}; + \infty \right).\]
\[4x - 3 < x^{2}\]
\[x^{2} - 4x + 3 > 0\]
\[D_{1} = 4 - 3 = 1\]
\[x_{1} = 2 + 1 = 3;\]
\[x_{2} = 2 - 1 = 1;\]
\[(x - 1)(x - 3) > 0\]
\[x < 1;\ \ x > 3.\]
\[x \in \left\lbrack \frac{3}{4};1 \right) \cup (3; + \infty).\]
\[Ответ:\ x \in \left\lbrack \frac{3}{4};1 \right) \cup (3; + \infty).\]
\[\textbf{в)}\ \sqrt{5x - 4} < x\]
\[5x - 4 \geq 0\]
\[5x \geq 4\]
\[x \geq 0,8.\]
\[M = \lbrack 0,8;\ + \infty).\]
\[5x - 4 < x^{2}\]
\[x^{2} - 5x + 4 > 0\]
\[x_{1} + x_{2} = 5;\ \ x_{1} \cdot x_{2} = 4\]
\[x_{1} = 1;\ \ x_{2} = 4.\]
\[(x - 1)(x - 4) > 0\]
\[x < 1;\ \ \ \ x > 4.\]
\[x \in \lbrack 0,8;1) \cup (4; + \infty).\]
\[\textbf{г)}\ \sqrt{6x - 5} < x\]
\[6x - 5 \geq 0\]
\[6x \geq 5\]
\[x \geq \frac{5}{6}.\]
\[M = \left\lbrack \frac{5}{6}; + \infty \right).\]
\[6x - 5 < x^{2}\]
\[x^{2} - 6x + 5 > 0\]
\[D_{1} = 9 - 5 = 4\]
\[x_{1} = 3 + 2 = 5;\]
\[x_{2} = 3 - 2 = 1;\]
\[(x - 1)(x - 5) > 0\]
\[x < 1;\ \ \ x > 5.\]
\[x \in \left\lbrack \frac{5}{6};1 \right) \cup (5; + \infty).\]