\[\boxed{\mathbf{7.}}\]
\[\textbf{а)}\ \sqrt{2x - 1} < x\]
\[2x - 1 \geq 0\]
\[2x \geq 1\]
\[x \geq 0,5.\]
\[M = \lbrack 0,5; + \infty).\]
\[2x - 1 < x^{2}\ \]
\[x^{2} - 2x + 1 > 0\]
\[(x - 1)^{2} > 0\]
\[x \neq 1.\]
\[x \in \lbrack 0,5;1) \cup (1; + \infty).\]
\[Ответ:\ x \in \lbrack 0,5;1) \cup (1; + \infty).\]
\[\textbf{б)}\ 2\sqrt{x - 1} < x\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[M = \lbrack 1; + \infty).\]
\[4(x - 1) < x^{2}\]
\[4x - 4 < x^{2}\ \]
\[x^{2} - 4x + 4 > 0\]
\[(x - 2)^{2} > 0\]
\[x \neq 2.\]
\[x \in \lbrack 1;2) \cup (2; + \infty).\]
\[Ответ:\ x \in \lbrack 1;2) \cup (2; + \infty).\]
\[\textbf{в)}\ \sqrt{6x - 9} < x\]
\[6x - 9 \geq 0\]
\[6x \geq 9\]
\[x \geq 1,5.\]
\[M = \lbrack 1,5; + \infty).\]
\[6x - 9 < x^{2}\]
\[x^{2} - 6x + 9 > 0\]
\[(x - 3)^{2} > 0\]
\[x \neq 3.\]
\[x \in \lbrack 1,5;3) \cup (3; + \infty).\]
\[Ответ:\ x \in \lbrack 1,5;3) \cup (3; + \infty)\]
\[\textbf{г)}\ 2\sqrt{2x - 4} < x\]
\[2x - 4 \geq 0\]
\[2x \geq 4\]
\[x \geq 2.\]
\[M = \lbrack 2; + \infty).\]
\[4(2x - 4) < x^{2}\]
\[8x - 16 < x^{2}\]
\[x^{2} - 8x + 16 > 0\]
\[(x - 4)^{2} > 0\]
\[x \neq 4.\]
\[x \in \lbrack 2;4) \cup (4; + \infty).\]
\[Ответ:\ x \in \lbrack 2;4) \cup (4; + \infty)\]