Решебник по алгебре 11 класс Никольский Параграф 11. Равносильность неравенств на множествах Задание 40

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 40

\[\boxed{\mathbf{40.}}\]

\[\textbf{а)}\lg(x + 1) + \lg(x - 8) >\]

\[> \lg{(2x - 8)}\]

\[x + 1 > 0\]

\[x > - 1.\]

\[x - 8 > 0\]

\[x > 8.\]

\[2x - 8 > 0\]

\[2x > 8\]

\[x > 4.\]

\[M = (8; + \infty).\]

\[\lg{(x + 1)(x - 8)} > \lg{(2x - 8)}\]

\[(x + 1)(x - 8) > 2x - 8\]

\[x^{2} + x - 8x - 8 - 2x + 8 > 0\]

\[x^{2} - 9x > 0\]

\[x(x - 9) > 0\]

\[x < 0;\ \ x > 9.\]

\[Решение\ неравенства:\]

\[x \in (9; + \infty).\]

\[Ответ:x \in (9; + \infty).\]

\[\textbf{б)}\log_{2}(x + 1) + \log_{2}(3x - 1) >\]

\[> \log_{2}{(9x + 5)}\]

\[x + 1 > 0\]

\[x > - 1.\]

\[3x - 1 > 0\]

\[3x > 1\]

\[x > \frac{1}{3}.\]

\[9x + 5 > 0\]

\[9x > - 5\]

\[x > - \frac{5}{9}.\]

\[M = \left( \frac{1}{3}; + \infty \right).\]

\[\log_{2}{(x + 1)(3x - 1)} >\]

\[> \log_{2}{(9x + 5)}\]

\[(x + 1)(3x - 1) > 9x + 5\]

\[3x^{2} + 3x - x - 1 - 9x - 5 > 0\]

\[3x^{2} - 7x - 6 > 0\]

\[D = 49 + 72 = 121\]

\[x_{1} = \frac{7 + 11}{6} = 3;\]

\[x_{2} = \frac{7 - 11}{6} = - \frac{4}{6} = - \frac{2}{3};\]

\[\left( x + \frac{2}{3} \right)(x - 3) > 0\]

\[x < - \frac{2}{3};\ \ x > 3.\]

\[Решение\ неравенства:\]

\[x \in (3; + \infty).\]

\[Ответ:x \in (3; + \infty).\]

\[3x + 1 > 0\]

\[3x > - 1\]

\[x > - \frac{1}{3}.\]

\[2x - 1 > 0\]

\[2x > 1\]

\[x > 0,5.\]

\[5x - 1 > 0\]

\[5x > 1\]

\[x > 0,2.\]

\[M = (0,5; + \infty).\]

\[\log_{\frac{1}{2}}{(3x + 1)(2x - 1)} <\]

\[< \log_{\frac{1}{2}}{(5x - 1)}\]

\[(3x + 1)(2x - 1) > 5x - 1\]

\[6x^{2} + 2x - 3x - 1 - 5x + 1 > 0\]

\[6x^{2} - 6x > 0\]

\[6x(x - 1) > 0\]

\[x < 0;\ \ x > 1.\]

\[Решение\ неравенства:\]

\[x \in (1; + \infty).\]

\[Ответ:x \in (1; + \infty).\]

\[4x + 1 > 0\]

\[4x > - 1\]

\[x > - 0,25.\]

\[2x - 1 > 0\]

\[2x > 1\]

\[x > 0,5.\]

\[10x + 7 > 0\]

\[10x > - 7\]

\[x > - 0,7.\]

\[M = (0,5; + \infty).\]

\[\log_{\frac{1}{3}}{(4x + 1)(2x - 1)} <\]

\[< \log_{\frac{1}{3}}{(10x + 7)}\]

\[(4x + 1)(2x - 1) > 10x + 7\]

\[8x^{2} + 2x - 4x - 1 - 10x - 7 >\]

\[> 0\]

\[8x^{2} - 12x - 8 > 0\ \ \ \ |\ :4\]

\[2x^{2} - 3x - 2 > 0\]

\[D = 9 + 16 = 25\]

\[x_{1} = \frac{3 + 5}{4} = 2;\]

\[x_{2} = \frac{3 - 5}{4} = - 0,5.\]

\[(x + 0,5)(x - 2) > 0\]

\[x < - 0,5;\ \ x > 2.\]

\[Решение\ неравенства:\]

\[x \in (2; + \infty).\]

\[Ответ:x \in (2; + \infty).\]

Скачать ответ
Есть ошибка? Сообщи нам!