Решебник по алгебре 11 класс Никольский Параграф 11. Равносильность неравенств на множествах Задание 39

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 39

\[\boxed{\mathbf{39.}}\]

\[\textbf{а)}\ \sqrt{x + 3}\sqrt{x + 8} > 2x + 4\]

\[x + 3 \geq 0\]

\[x \geq - 3.\]

\[x + 8 \geq 0\]

\[x \geq - 8.\]

\[M = \lbrack - 3; + \infty).\]

\[(x + 3)(x + 8) > (2x + 4)^{2}\]

\[x^{2} + 3x + 8x + 24 >\]

\[> 4x^{2} + 16x + 16\]

\[3x^{2} + 5x - 8 < 0\]

\[D = 25 + 96 = 121\]

\[x_{1} = \frac{- 5 + 11}{6} = 1;\]

\[x_{2} = \frac{- 5 - 11}{6} = - \frac{16}{6} = - \frac{8}{3} =\]

\[= - 2\frac{2}{3}.\]

\[\left( x + 2\frac{2}{3} \right)(x - 1) < 0\]

\[- 2\frac{2}{3} < x < 1.\]

\[Решение\ неравенства:\]

\[x \in \lbrack - 3;1).\]

\[Ответ:x \in \lbrack - 3;1).\]

\[\textbf{б)}\ \sqrt{x + 3}\sqrt{x + 6} < x + 4\]

\[x + 3 \geq 0\]

\[x \geq - 3.\]

\[x + 6 \geq 0\]

\[x \geq - 6.\]

\[M = \lbrack - 3;\ + \infty).\]

\[(x + 3)(x + 6) < (x + 4)^{2}\]

\[x^{2} + 3x + 6x + 18 <\]

\[< x^{2} + 8x + 16\]

\[x < - 2.\]

\[Решение\ неравенства:\]

\[x \in \lbrack - 3; - 2)\]

\[Ответ:x \in \lbrack - 3; - 2).\]

\[\textbf{в)}\ \sqrt{2x + 3}\sqrt{3x + 7} > 2x + 4\]

\[2x + 3 \geq 0\]

\[2x \geq - 3\]

\[x \geq - 1,5.\]

\[3x + 7 \geq 0\]

\[3x \geq - 7\]

\[x \geq - 2\frac{1}{3}.\]

\[M = \lbrack - 1,5;\ + \infty).\]

\[(2x + 3)(3x + 7) > (2x + 4)^{2}\]

\[6x^{2} + 9x + 14x + 21 >\]

\[> 4x^{2} + 16x + 16\]

\[2x^{2} + 7x + 5 > 0\]

\[D = 49 - 40 = 9\]

\[x_{1} = \frac{- 7 + 3}{4} = - 1;\]

\[x_{2} = \frac{- 7 - 3}{4} = - 2,5.\]

\[(x + 2,5)(x + 1) > 0\]

\[x < - 2,5;\ \ x > - 1.\]

\[Решение\ неравенства:\]

\[x \in ( - 1; + \infty).\]

\[Ответ:x \in ( - 1; + \infty).\]

\[\textbf{г)}\ \sqrt{2x - 1}\sqrt{3x - 2} < 4x - 3\]

\[2x - 1 \geq 0\]

\[2x \geq 1\]

\[x \geq 0,5.\]

\[3x - 2 \geq 0\]

\[3x \geq 2\]

\[x \geq \frac{2}{3}.\]

\[M = \left\lbrack \frac{2}{3}; + \infty \right).\]

\[(2x - 1)(3x - 2) < (4x - 3)^{2}\]

\[6x^{2} - 3x - 4x + 2 <\]

\[< 16x^{2} - 24x + 9\]

\[10x^{2} - 17x + 7 > 0\]

\[D = 289 - 280 = 9\]

\[x_{1} = \frac{17 + 3}{20} = 1;\]

\[x_{2} = \frac{17 - 3}{20} = \frac{7}{10} = 0,7;\]

\[(x - 0,7)(x - 1) > 0\]

\[x < 0,7;\ \ x > 1.\]

\[Решение\ неравенства:\]

\[x \in (1; + \infty).\]

\[Ответ:x \in (1; + \infty).\]

Скачать ответ
Есть ошибка? Сообщи нам!